Course 2E02 2010 (SF Engineers \& MSISS \& MEMS)

Sheet 1

Due: at the end of the tutorial

Exercise 1

Find $\mathbf{v}+\mathbf{u}, 2 \mathbf{v},\|\mathbf{u}\|,\|\mathbf{v}\|$, the dot product $\mathbf{u} \cdot \mathbf{v}$, the angle between \mathbf{u} and \mathbf{v} and determine whether \mathbf{u} and \mathbf{v} are orthogonal (or for which values of parameters \mathbf{u} and \mathbf{v} are orthogonal, if any are present):
(i) $\mathbf{u}=(1,-2,0), \mathbf{v}=(2,1,0)$;
(ii) $\mathbf{u}=(1,0,0,1,0), \mathbf{v}=(1,0,-2,1,0)$;
(iii) $\mathbf{u}=(2, k, 2,-k), \mathbf{v}=(0, k, 1,3)$;
(iv) $\mathbf{u}=(-a, c, 0, b, 0), \mathbf{v}=(2 c, a,-c, 0, b)$.

Exercise 2

Find the matrix for the linear transformations T defined by the equations
(i) $w_{1}=x_{1}, \quad w_{2}=x_{1}-x_{2}$,
(ii) $\quad w_{1}=x-5 z, \quad w_{2}=z, \quad w_{3}=-2 y$,
(iii) $\quad w_{1}=x_{4}, \quad w_{2}=x_{4}+x_{3}, \quad w_{3}=x_{4}+x_{3}+x_{2}, \quad w_{4}=x_{4}+x_{3}+x_{2}+x_{1}$, and by the formulas
(iv) $T\left(x_{1}, x_{2}\right)=\left(-x_{1}, x_{2}\right)$,
(v) $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{1}-x_{2}+x_{3}, 5 x_{2}, 2 x_{3}\right)$.

