Course 2E02 2010 (SF Engineers & MSISS & MEMS)

Sheet 1

Due: at the end of the tutorial

Exercise 1

Find $\mathbf{v} + \mathbf{u}$, $2\mathbf{v}$, $\|\mathbf{u}\|$, $\|\mathbf{v}\|$, the dot product $\mathbf{u} \cdot \mathbf{v}$, the angle between \mathbf{u} and \mathbf{v} and determine whether \mathbf{u} and \mathbf{v} are orthogonal (or for which values of parameters \mathbf{u} and \mathbf{v} are orthogonal, if any are present):

- (i) $\mathbf{u} = (1, -2, 0), \mathbf{v} = (2, 1, 0);$
- (ii) $\mathbf{u} = (1, 0, 0, 1, 0), \mathbf{v} = (1, 0, -2, 1, 0);$
- (iii) $\mathbf{u} = (2, k, 2, -k), \mathbf{v} = (0, k, 1, 3);$
- (iv) $\mathbf{u} = (-a, c, 0, b, 0), \mathbf{v} = (2c, a, -c, 0, b).$

Exercise 2

Find the matrix for the linear transformations T defined by the equations

- (i) $w_1 = x_1, \quad w_2 = x_1 x_2,$
- (ii) $w_1 = x 5z$, $w_2 = z$, $w_3 = -2y$,
- (iii) $w_1 = x_4$, $w_2 = x_4 + x_3$, $w_3 = x_4 + x_3 + x_2$, $w_4 = x_4 + x_3 + x_2 + x_1$, and by the formulas
- (iv) $T(x_1, x_2) = (-x_1, x_2),$
- (v) $T(x_1, x_2, x_3) = (x_2, x_1, x_1 x_2 + x_3, 5x_2, 2x_3).$