MAU22E01 2020 (SF Engineers & MSISS & MEMS)

Sheet 6

|--|

It is important to be able to do all the problems, including unmarked ones, to ensure you are prepared for the exam.

Exercise 1

Calculate the length of $\mathbf{u} = (1, 0, 1)$, the distance between \mathbf{u} and $\mathbf{v} = (0, 1, -1)$ and the angle between \mathbf{u} and \mathbf{v}

- (i) relative to the standard dot product;
- (ii) relative to the inner product given by $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 2u_2 v_2 + 2u_3 v_3$.

Exercise 2

Which of the following bases are orthogonal and which are orthonormal relative to the dot product?

- (i) (-1,1), (0,2);
- (ii) (0,0,1), (2,-2,0), (1,1,0);
- (iii) $(1,0,0), (0,\frac{3}{5},\frac{4}{5}), (0,\frac{4}{5},-\frac{3}{5}).$

Exercise 3

Calculate the coordinates of $\mathbf{v} = (3, -2, -1)$ relative to the orthogonal basis

$$\{(-2,0,0), (0,2,3), (0,3,-2)\}:$$

- (i) relative to the standard dot product;
- (ii) relative to the inner product $\langle \mathbf{u}, \mathbf{v} \rangle = 4u_1v_1 + u_2v_2 + u_3v_3$ (check that the given basis is still orthogonal relative to this inner product).

Exercise 4

Find the orthogonal projection of the vector \mathbf{v} onto the plane spanned by the orthogonal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ (relative to the dot product), where

$$\mathbf{u}_1 = (-1, 2, 0), \quad \mathbf{u}_2 = (2, 1, -1),$$

and

(i) $\mathbf{v} = (1, 0, 1);$ (ii) $\mathbf{v} = (1, -1, 1).$