MAU22E01 2019 (SF Engineers & MSISS & MEMS)

Sheet 5

$ \sim \sim$

Exercise 1

In each case, either find the coordinates of the vector \mathbf{v} with respect to the basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of their span (i.e. the coefficients k_1, \ldots, k_n in the representation $\mathbf{v} = k_1 \mathbf{v}_1 + \cdots + k_n \mathbf{v}_n$) or conclude that \mathbf{v} is not in the span of $\mathbf{v}_1, \ldots, \mathbf{v}_n$:

- (i) $\mathbf{v} = (1, 1), \, \mathbf{v}_1 = (1, -1), \, \mathbf{v}_2 = (1, -2);$
- (ii) $\mathbf{v} = (1, -3, 2), \mathbf{v}_1 = (-1, -1, 0), \mathbf{v}_2 = (1, 0, 1), \mathbf{v}_3 = (0, 1, 1);$
- (iii) $\mathbf{v} = (-1, 1, 1, 1), \mathbf{v}_1 = (1, 0, 1, 0), \mathbf{v}_2 = (1, 1, 0, 0), \mathbf{v}_3 = (0, 0, 2, 0).$
- (iv) $\mathbf{v} = (1, 1, 1, 0), \mathbf{v}_1 = (1, 0, 1, 0), \mathbf{v}_2 = (1, 1, 0, 0), \mathbf{v}_3 = (0, 0, 2, 0), \mathbf{v}_4 = (1, 0, 0, -1).$

Exercise 2

Separate variables into two groups of dependent and free variables, write the general solution of the system and find a particular solution:

(i)

$$\begin{cases} x+y-t=1\\ -z+2t=-3 \end{cases};$$

(ii)

1	x_4	_	x_3	=	-1	
{	x_3	—	x_1	=	1	;
	x_2	_	x_1	=	1	

(iii)

$$x_1 - x_2 + x_3 - x_4 + x_5 = 1.$$