Course 2E01 2018 (SF Engineers & MSISS & MEMS)

\mathbf{S}	h	e	e	\mathbf{t}	5
--------------	---	---	---	--------------	---

Due: at the end of the tutorial

Exercise 1

Which of the following sets of vectors are bases for the corresponding space \mathbb{R}^n ? (The dimension *n* should be clear from the length of vectors.)

(i) (1, -1);

- (ii) (1,0), (1,2);
- (iii) (1,1), (-2,-2);
- (iv) (1,1), (15,222), (-1,-1);
- (v) (1, -1, 2, 0), (1, 1, 5, -3), (1, -1, 2, 1);
- (vi) (1,0,1), (1,1,0), (2,1,0).

Exercise 2

Find the coordinates of the vector \mathbf{v} with respect to the basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ (i.e. the coefficients k_1, \ldots, k_n in the representation $\mathbf{v} = k_1 \mathbf{v}_1 + \cdots + k_n \mathbf{v}_n$):

(i) $\mathbf{v} = (2, 1), \mathbf{v}_1 = (1, -1), \mathbf{v}_2 = (1, -2);$ (ii) $\mathbf{v} = (1, -3, 2), \mathbf{v}_1 = (1, 1, 0), \mathbf{v}_2 = (1, 0, 1), \mathbf{v}_3 = (0, 1, 1);$ (iii) $\mathbf{v} = (1, 1, 1, 0), \mathbf{v}_1 = (1, 0, 1, 0), \mathbf{v}_2 = (1, 1, 0, 0), \mathbf{v}_3 = (0, 0, 2, 0), \mathbf{v}_4 = (1, 0, 0, -1).$

Exercise 3

Write the general solution of the system as a sum of its partial solution and a linear combination of basis vectors of the associated homogenous system:

(i)

$$\begin{cases} x+y+t=1\\ -z+2t=3 \end{cases};$$

(ii)

$$\begin{cases} x_4 - x_3 = -1 \\ x_3 - x_2 = 1 \\ x_2 - x_1 = 1 \end{cases};$$

(iii)

 $x_1 - x_2 + x_3 - x_4 = -2.$