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Exercise 1

Question

Find the eigenvalues and corresponding eigenvectors of the fol-
lowing matrix:

A =


−1 2 −1
0 2 −3
0 −4 6



Solution

Eigenvalues

The eigenvalues are the λ’s such that det(λI − A) = 0
So we need to solve p(λ) = det(λI − A) = 0

p(λ) = det


λ+ 1 −2 1

0 λ− 2 3
0 4 λ− 6


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= (λ+ 1)[(λ− 2)(λ− 6)− 4(3)]

= (λ+ 1)[λ2 − 8λ+ 12− 12]

= (λ+ 1)(λ)(λ− 8)

And so λ = −1, 0, 8

Eigenvectors

Now that we have the eigenvalues, we need to find the eigenvec-
tors ~x such that ~x 6= 0 and A~x = λ~x.

This is equivalent to solving λ~x− A~x = (λI − A)~x = 0
which is equivalent to finding a vector ~x in the null space of

λI − A
Since a matrix and its row reduced form are row equivalent,

this means the null space of a matrix and the null space of its
row reduced form are equal.

Therefore we can row reduce λI − A before solving to make
it easier (if we like)

λ = −1

−I − A =


0 −2 1
0 −3 3
0 4 −7



→


0 1 −1

2

0 1 −1
0 4 −7



→


0 1 −1

2

0 0 1
0 0 0


So to solve for an eigenvector we can find one vector in the

nullspace of this matrix:
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
0 1 −1

2

0 0 1
0 0 0



v1
v2
v3

 =


0
0
0



v2 −
v3
2

= 0⇒ v2 = 0

v3 = 0

There is no condition imposed on v1 and so it is a free vari-
able. We only need one vector from the null space to be our
eigenvector so we can arbitrarily assign it a value (with the only
condition being ~x 6= 0).

Here we choose 1.
This gives the first eigenvector as:

~x1 =


1
0
0



λ = 0

−A =


1 −2 1
0 −2 3
0 4 −6



→


1 0 −2
0 1 −3

2

0 0 0


So we solve for a vector in the nullspace:

1 0 −2
0 1 −3

2

0 0 0



v1
v2
v3

 =


0
0
0


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v1 − 2v3 = 0⇒ v1 = 2v3

v2 −
3v3
2

= 0⇒ v2 =
3v3
2

Here we see that both v1 and v2 can be expressed in terms of
v3, therefore these two equations which represent our eigenvector
will hold for all v3.

So v3 is our free variable, which we can arbitrarily choose
(again apart from v3 = 0) to give us an eigenvector.

Since the second equation has 2 in the denominator we choose
v3 = 2 for convenience.

This gives our second eigenvector:

~x2 =


4
3
2



λ = 8

8I − A =


9 −2 1
0 6 3
0 4 2



→


1 −2

9
1
9

0 1 1
2

0 0 0



→


1 0 2

9

0 1 1
2

0 0 0


So we solve for a vector in the nullspace:

1 0 2
9

0 1 1
2

0 0 0



v1
v2
v3

 =


0
0
0


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v1 −
2v3
9

= 0⇒ v1 = −2v3
9

v2 +
v3
2

= 0⇒ v2 = −v3
2

Again v3 is our free variable, we choose 18 this time as it is
the common denominator.

This gives our third eigenvector:

~x3 =


−4
−9
18



Exercise 2

Question

Find a matrix P and a diagonal matrix D diagonalizing A, i.e.
P−1AP = D, where A is as in Exercise 1.

Answer

This matrix P is simply a matrix with our three eigenvectors as
the columns:

P =


1 4 −4
0 3 −9
0 2 18


Then the diagonal matrix is one with our eigenvalues on the

diagonal and zeros elsewhere.
Caution: be sure that that the eigenvalue on the first diag-

onal spot corresponds to the eigenvector in the first column of
P , the second eigenvalue corresponds to the eigenvector in the
second column of P and similarly for the third.
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D =


−1 0 0
0 0 0
0 0 8


Now these matrices will satisfy P−1AP = D
Note: if you wish to check your answer it may be easier to

check that AP = PD, rather than calculating P−1

Exercise 3

Question

Use Exercise 2 to solve the system of ordinary differential equa-
tions 

y
′

1

y
′

2

y
′

3

 = A


y1
y2
y3


where A is as in Exercise 1.

Answer

We consider the system:
u

′

1

u
′

2

u
′

3

 = D


u1
u2
u3


Then substituting D for P−1AP we get:


u

′

1

u
′

2

u
′

3

 = P−1AP


u1
u2
u3


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P


u

′

1

u
′

2

u
′

3

 = AP


u1
u2
u3


We can see that if we consider ~u to be such that P~u = ~y and

hence P ~u′ = ~y′, that we get our original system
Therefore if we solve for ~u, we can find ~y = P~u.
So

~u′ = D~u
u

′

1

u
′

2

u
′

3

 =


−1 0 0
0 0 0
0 0 8



u1
u2
u3



u

′

1

u
′

2

u
′

3

 =


−u1

0
8u3


And thus we can solve these simple ODEs to get:

u1
u2
u3

 =


c1e
−t

c2
c3e

8t


where the ci’s are arbitrary constants for which any value of

them will solve the system.
Note: the t is the independent variable for which we assume

y depends on i.e. y = y(t) and likewise u = u(t).
Now we have ~u, we simply find ~y as:

~y = P~u
y1
y2
y3

 =


1 4 −4
0 3 −9
0 2 18



u1
u2
u3



y1
y2
y3

 =


1 4 −4
0 3 −9
0 2 18



c1e
−t

c2
c3e

8t


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
y1
y2
y3

 =


c1e
−t − 4c2 − 4c3e

8t

3c2 − 9c3e
8t

2c2 + 18c3e
8t


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