Course 2E01 2015 (SF Engineers & MSISS & MEMS)

Sheet 6

Due: at the end of the tutorial

Exercise 1

Calculate the length of $\mathbf{u} = (-1, 1, 0)$, the distance between \mathbf{u} and $\mathbf{v} = (0, -1, 0)$ and the angle between \mathbf{u} and \mathbf{v}

- (i) with respect to the standard dot product;
- (ii) with respect to the inner product given by $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 3u_2 v_2 + 2u_3 v_3$.

Exercise 2

Which of the following bases are orthogonal and which are orthonormal with respect to the standard dot product?

- (i) (2,0), (0,-1);
- (ii) (0,0,1), (2,2,0), (-1,1,0);
- (iii) (-1,0,0), $(0,-\frac{3}{5},\frac{4}{5})$, $(0,\frac{4}{5},\frac{3}{5})$.

Exercise 3

Calculate the coordinates of $\mathbf{v} = (1, 2, -3)$ relative to the orthogonal basis

$$\{(3,0,0),(0,2,4),(0,4,-2)\}:$$

- (i) with respect to the standard dot product;
- (ii) with respect to the inner product $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 4 u_2 v_2 + u_3 v_3$ (check that the given basis is still orthogonal with respect to this inner product).