Course 2328 Complex Analysis

Due: Friday, at the end of the lecture

Exercise 1

Is there an example of a real-differential function f on $\mathbb C$ such that:

- (i) f is complex-differentiable at z if and only if z = 0 or z = 1?
- (ii) f is complex-differentiable at z if and only if $|z| \le 1$?

Solutions

- (i) $f(z) = |z(z-1)|^2$ is an example, because both partial derivatives are zero at 0 and 1. On the other hand, since f(z) is real-valued, if the Cauchy-Riemann equations hold at any other point, then all partial derivatives would be zero there.
- (ii) Consder f vanishing for $|z| \leq 1$ and satisfying $f(z) = (|z| 1)^2$ for $|z| \geq 1$. Then all partial derivatives vanish on the unit circle, implying real differentiability. The same argument as above implies that f is nowhere complex-differentiable outside the unit disk.

Exercise 2

Use the Cauchy-Riemann equations to decide which of the following functions are holomorphic:

$$(\text{Re}z)^2, \quad |z|^2, \quad -i\bar{z}^2, \quad e^{-z}, \quad e^{-\bar{z}}.$$

Exercise 3

Let $f: \Omega \to \mathbb{C}$ be holomorphic. Define the new function \bar{f} by $\bar{f}(z) := \overline{f(\bar{z})}$. Show that \bar{f} is holomorphic on the open set $\bar{\Omega} := \{\bar{z} : z \in \Omega\}$.

Exercise 4

Using the Cauchy-Riemann equations, show:

- (i) if a holomorphic function f satisfies Ref = const, then f = const.
- (ii) if f = u + iv is holomorphic and $a, b \in \mathbb{C} \setminus \{0\}$ are such that au + bv = const, then again f = const.

Exercise 5

- (i) Show that $(e^z)' = e^z$;
- (ii) Show that $\cos z$ and $\sin z$ are C-differentiable and compute their derivatives.