Course 2328 Complex Analysis

Sheet 5

Due: Friday, at the end of the lecture

Exercise 1

Let γ be the sum of two line segments connecting -1 with iy and iy with 1, where y is a fixed parameter.

- (i) Write an explicit parametrization for γ ;
- (ii) For every y, evaluate the integrals $\int_{\gamma} z \, dz$ and $\int_{\gamma} \bar{z} \, dz$. Which of the integrals is independent of y?
- (iii) Use (ii) to show that the conclusion of Cauchy's theorem does not hold for $f(z) = \overline{z}$.

Exercise 2

(i) Calculate $\int_{\gamma} f(z) dz$, where

$$f(z) = z + \frac{1}{z} - \frac{4}{z^3}$$

and $\gamma(t) = ce^{it}, 0 \le t \le 2\pi$.

- (ii) Use (i) to show that f(z) does not have an antiderivative in its domain of definition.
- (iii) Does $f(z) = \frac{1}{z^n}$ have an antiderivative, where $n \ge 2$ is an integer?
- (iv) Give an example of an open set Ω , where the function $f(z) = \frac{1}{(z+1)(z-1)}$ does not have an antiderivative.

Justify your answer.

Exercise 3

Calculate the residues:

(i) $\operatorname{Res}_{3} \frac{z^{2} - e^{-z}}{z - 3}$; (ii) $\operatorname{Res}_{0} \frac{\sin(z^{2}) - e^{2z}}{z^{5} + z^{3} - z}$; (iii) $\operatorname{Res}_{-1} \frac{\cos(2\pi z^{-2}) + ze^{z}}{\sin(\pi z)}$.

Exercise 4

Evaluate the integrals:

- (i) $\int_{|z|=2} \frac{e^{z}}{(z^{2}+z)(z-3)} dz;$ (ii) $\int_{0}^{2\pi} \frac{1}{(2-\sin\theta)(3+\cos\theta)} d\theta;$ (iii) $\int_{-\infty}^{\infty} \frac{x^{3}-x}{x^{6}+1} dx;$ (iv) $\int_{0}^{\infty} \frac{x^{3}e^{i\lambda x}}{x^{6}+1} dx \rightarrow 0;$

(iv)
$$\int_{-\infty}^{\infty} \frac{x^3 e^{i\lambda x}}{x^4 + 1} dx, \ \lambda > 0;$$

(v) $\int_0^\infty \frac{x^\alpha}{x^2+1} dx$, $-1 < \alpha < 1$, $\alpha \notin \mathbb{Z}$.