Course 2328 Complex Analysis

Due: Friday, at the end of the lecture

Exercise 1

Is there an example of a real-differential function f on \mathbb{C} such that:

- (i) f is complex-differentiable at z if and only if z = 0 or z = 1?
- (ii) f is complex-differentiable at z if and only if $|z| \le 1$?

Exercise 2

Use the Cauchy-Riemann equations to decide which of the following functions are holomorphic:

$$(\text{Re}z)^2$$
, $|z|^2$, $-i\bar{z}^2$, e^{-z} , $e^{-\bar{z}}$.

Exercise 3

Let $f: \Omega \to \mathbb{C}$ be holomorphic. Define the new function \overline{f} by $\overline{f}(z) := \overline{f(\overline{z})}$. Show that \overline{f} is holomorphic on the open set $\overline{\Omega} := \{\overline{z} : z \in \Omega\}$.

Exercise 4

Using the Cauchy-Riemann equations, show:

- (i) if a holomorphic function f satisfies Ref = const, then f = const.
- (ii) if f = u + iv is holomorphic and $a, b \in \mathbb{C} \setminus \{0\}$ are such that au + bv = const, then again f = const.

Exercise 5

- (i) Show that $(e^z)' = e^z$;
- (ii) Show that $\cos z$ and $\sin z$ are \mathbb{C} -differentiable and compute their derivatives.