Course 2328 Complex Analysis

Due: Friday, at the end of the lecture

Exercise 1

Find all z such that the sequence (a_n) is convergent:

- (i) $a_n := z^n;$ (ii) $a_n := z^n/n;$ (iii) $a_n := z^n/(n!);$ (iv) $a_n := \sin(z^n);$
- (v) $a_n := \text{Log}(1 z^n)$ (where Log is the principal value of log);

Exercise 2

For what z does the series converge:

(i) $\sum_{n} z^{2^{n}-n}$, (ii) $\sum_{n} \frac{z^{n^{2}}}{n^{4}}$, (iii) $\sum_{n} \frac{1}{z^{n}-n^{2}}$.

Exercise 3

Consider the sequence of holomorphic functions $f_n(z) = z - \frac{1}{n}$.

(i) Is the sequence (f_n) converging uniformly on \mathbb{C} ?

(ii) Is the sequence of squares (f_n^2) converging uniformly on \mathbb{C} ? Justify your answer.

Exercise 4

Determine all points $z \in \mathbb{C}$ where the function f(z) has a limit:

(i) $f(z) = \frac{1}{z} + \frac{1}{z^2};$ (ii) $f(z) = \frac{(\operatorname{Re} z)^2}{z};$ (iii) $f(z) = \frac{\operatorname{Im} z}{z^3};$ (iv) $f(z) = \operatorname{Log} z.$

Justify your answer.

Exercise 5

For which $w \in \mathbb{C}$, the power function $f(z) := z^w$ has a continuous branch in the closed upper-half plane $\{\operatorname{Im} z \ge 0\}$?

Exercise 6

Prove or disprove:

- (i) A finite union of compact subsets in \mathbb{C} is compact.
- (ii) Arbtitrary union of compact subsets in \mathbbm{C} is compact.
- (iii) A finite union of connected subsets in \mathbbm{C} is connected.
- (iv) Arbtitrary union of connected subsets in $\mathbb C$ is connected.
- (v) Arbtitrary union of connected subsets in \mathbbm{C} having a nonempty intersection is connected.