Course 2328 Complex Analysis

Sheet 2

Due: Friday, at the end of the lecture on Thursday of the next week

Exercise 1

Using the definition show:

- (i) Finite intersections and arbitrary unions of open sets are open.
- (ii) Finite unions and arbitrary intersections of closed sets are closed.
- (iii) Arbitrary union of connected sets containing a common point is connected.

Exercise 2

- (i) If Ω is open in \mathbb{C} and $A \subset \mathbb{C}$ any subset, then $\Omega \cap A$ is open in A.
- (ii) If $A \subset \mathbb{C}$ is any subset and U is open in A, then there exists Ω open in \mathbb{C} with

$$\Omega \cap A = U.$$

Hint. Use the definition and construct Ω as union of disks.

Exercise 3

Give examples of:

- (i) Infinite intersections of open sets that is not open.
- (ii) Infinite union of closed sets that is not closed.
- (iii) Intersection of two connected sets containing a common point that is not connected.

Exercise 4

For what z does the series converge:

(i) $\sum_n z^{n+3^n}$,

(ii)
$$\sum_{m} \frac{z^{n^2}}{z^3}$$
,

(iii)
$$\sum_{n=1}^{n=1} \frac{1}{z^n - n}$$
.

Which are power series? Justisfy your answer.

Exercise 5

Consider the sequence of holomorphic functions $f_n(z) = z + \frac{1}{n^2}$.

(i) Is the sequence (f_n) converging uniformly on \mathbb{C} ?

(ii) Is the sequence of squares (f_n^2) converging uniformly on \mathbb{C} ?

Justisfy your answer.

Exercise 6

Use the Cauchy-Riemann equations to decide which of the following functions are holomorphic:

$$(\mathrm{Im}z)^2, |z|^2, i\bar{z}^2, e^{2z}, e^{\bar{z}}.$$

Exercise 7

Let $f: \Omega \to \mathbb{C}$ be holomorphic. Define the new function \overline{f} by $\overline{f}(z) := \overline{f(\overline{z})}$. Show that \overline{f} is holomorphic on the open set $\overline{\Omega} := \{\overline{z} : z \in \Omega\}$.

Exercise 8

Using the Cauchy-Riemann equations, show:

- (i) if a holomorphic function f satisfies Im f = const, then f = const.
- (ii) if f = u + iv is holomorphic and $a, b \in \mathbb{C} \setminus \{0\}$ are such that au + bv = const, then again f = const.

Exercise 9

- (i) Show that $(e^z)' = e^z$. (Hint. Differentiate in the direction of the x-axis.)
- (ii) Let f be any branch of $\log z$ (defined in an open set). Using the fact that f is inverse to e^z , show that f is holomorphic and $f'(z) = \frac{1}{z}$.

Exercise 10

Is there an example of a real-differential function f on $\mathbb C$ such that:

- (i) f is complex-differentiable at z if and only if z = 0?
- (i) f is complex-differentiable at z if and only if $|z| \leq 1$?