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1. The origin of complex numbers

1.1. Solving quadratic equation. The simplest quadratic equation having no real solutions is

x2 + 1 = 0.

Trying to solve it, we have to introduce the symbol i =
√
−1. As we also want to add and multiply,

we are lead to consider expressions
z = a+ ib,

where a and b are arbitrary real numbers. We call z a complex number and write

a = Re z, b = Im z

for the real and imaginary parts of z.
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Introducing i may appear artificial and is not relevant to the original problem of finding real
solutions. In fact, solution of quadratic equation was known to the ancient Greeks, who never
came across complex numbers nor felt any need for it.

1.2. Cubic equation and Cardano’s formula. In contrast to quadratic equation, solving a
cubic equation even over reals forces you to pass through complex numbers. In fact, this is how
complex numbers were discovered.

Consider the general cubic equation

a3x
3 + a2x

2 + a1x+ a0 = 0, a3 6= 0.

Dividing by a3 we can reduce it to

x3 + a2x
2 + a1x+ a0 = 0.

Using binomial formula (x+ y)3 = x3 + 3x2y + 3xy2 + y3, we can rewrite it as

(x+ a2/3)3 + p(x+ a2/3) + q = 0

for suitable p and q, or after a change of variables,

(1.1) x3 + px+ q = 0.

Cardano’s formula for solving (1.1) is

x = u+ v, u = 3

√
−q

2
+
√
D, v = 3

√
−q

2
−
√
D, D =

(q
2

)2
+
(p

3

)3
,

such that u, v satisfy

(1.2) uv = −p
3
.

Condition (1.2) is sometimes forgotten when Cardano’s formula is stated, but is essential and
cannot be dropped, or else the formula gives other values of x that are not among solutions.

The main difference from the quadratic equation formula is the fact that, in Cardano’s formula,
we may need to pass in our calculations through complex numbers even if the final result is real.
We illustrate this by a simple example.

1.3. Example of using Cardano’s formula. Consider the cubic equation

x3 − 3x = 0.

Since x3 − 3x = x(x−
√

3)(x+
√

3), we have 3 real solutions.
Now in Cardano’s formula we have p = −3, q = 0, D = −1, and hence

u =
3

√√
−1, v =

3

√
−
√
−1.

Thus, even if all solutions are real, we need to evaluate
√
−1! We shall now introduce the necessary

tools to complete the calculation.
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2. Algebraic operations with complex numbers

2.1. Addition and multiplication. Using the rule i2 = −1 we can define addition and multi-
plication of complex numbers:

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2),

(a1 + ib1)(a2 + ib2) = (a1a2) + i(a1b2 + a2b1) + i2(b1b2) = (a1a2 − b1b2) + i(a1b2 + a2b1).

2.2. The complex conjugate. The complex conjugate of z = a+ ib is given by

z̄ = a− ib,
from where we have formulas for the real and imaginary parts:

a = Re z =
z + z̄

2
, b = Im z =

z − z̄
2i

.

We also have the important formula

(2.1) zz̄ = (a+ ib)(a− ib) = a2 + b2.

The conjugation defines an automorphism in the sense that

z1 + z2 = z̄1 + z̄2, z1z2 = z̄1z̄2.

2.3. Division. We can use conjugates and formula (2.1) for division:

a1 + ib1
a2 + ib2

=
(a1 + ib1)(a2 − ib2)
(a2 + ib2)(a2 − ib2)

=
(a1a2 + b1b2) + i(a2b1 − a1b2)

a22 + b22
.

Thus we can always divide by a complex number different from zero.
It is now easy to see that complex numbers form a field, denoted by C.

3. The polar form

Any complex number z = a+ ib can be written in its polar form as

z = r(cos θ + i sin θ),

where

r = |z| =
√
a2 + b2 =

√
zz̄ ≥ 0

is the modulus or absolute value of z and θ is the argument of z, defined for z 6= 0 and satsifying

cos θ =
a

r
, sin θ =

b

r
, tan θ =

b

a
(for a 6= 0).

For z = 0, the argument θ is not defined. For z 6= 0, it is defined up to a multiple of 2π. In
particular, for z 6= 0, we can always choose θ uniquely in the interval (−π, π], which we call the
principal argument and denote by Arg z. By arg z we denote the set of all possible arguments, i.e.

arg z = {Arg z + 2πk : k ∈ Z}.
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Using the Euler’s formula

(3.1) eiθ = cos θ + i sin θ,

we can rewrite the polar form as

z = reiθ.

In polar form, multiplication and division look particularly simple:

(r1e
iθ1)(r2e

iθ2) = r1r2e
i(θ1+θ2),

r1e
iθ1

r2eiθ2
=
r1
r2
ei(θ1−θ2).

The first formula can be iterated to obtain de Moivre’s formula:

(reiθ)n = rneinθ,

which can be used for calculating the nth roots:

n
√
reiθ = n

√
rei

θ+2πk
n = n

√
r

(
cos

θ + 2πk

n
+ i sin

θ + 2πk

n

)
, k = 0, . . . , n− 1.

Note that θ is always defined up to a multiple of 2π and hence the addition of 2πk is essential in
the formula, but it suffices to take only finitely many values k = 0, . . . , n−1, to obtain all n roots.

3.1. Completing our example of using Cardano’s formula. We can now complete our cal-
culation in the example of using Cardano’s formula in §1.3. We have the polar form

i = ei
π
2

and hence

u =
3
√
i = cos

π/2 + 2πk

3
+ i sin

π/2 + 2πk

3
, k = 0, 1, 2.

Calculating we obtain the values

u =

√
3

2
+ i

1

2
, −

√
3

2
+ i

1

2
, −i.

Similarly,

v = 3
√
−i = cos

−π/2 + 2πk

3
+ i sin

−π/2 + 2πk

3
, k = 0, 1, 2,

which yields

v =

√
3

2
− i1

2
, −

√
3

2
− i1

2
, i.

Finally, according to the rule (1.2), we only consider x = u+ v for u, v satisfying uv = −p/3, i.e.
uv = 1 in our case. Hence we can only combine the first, second and third values of u with the
first, second and third values of v respectively, which yields the three solutions

x = u+ v =
√

3, −
√

3, 0.
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Note that without the rule (1.2), we would e.g. add the first value of u with the third value of v
giving

x =

√
3

2
+ i

3

2
,

which is not a solution of our equation (1.1).

4. Elementary topology

4.1. Open sets. In the sequel denote by

∆r(a) := {z ∈ C : |z − a| < r}

the disk with center a ∈ C and radius r > 0. A subset U ⊂ C is open (in C) if every point z0 ∈ U
can be surrounded by disk ∆ε(z0) ⊂ U for some ε > 0. More generally, a subset A ⊂ S is open in
the set S ⊂ C (briefly open in S, also open in the relative topology of S) if for every z0 ∈ A, there
exists ε > 0 with

∆ε(z0) ∩ S ⊂ A.

It is straightforward to check that arbitrary unions
⋃
α∈A Uα and finite intersections U1∩· · ·∩Un

of open sets (in a set S) are open (in a set S).

4.2. Closed sets. A set F ⊂ S is closed in S if S \ F is open in S. Using analogous properties
of open sets it is easy to see that arbitrary intersections and finite unions of closed sets in S are
closed in S.

4.3. Connected sets. A set S ⊂ C is connected if it cannot be covered by disjoint open sets U
and V such that U ∩ S 6= ∅, V ∩ S 6= ∅. Equivalently, one can use open sets in S:

Lemma 4.1. S is connected if and only if it cannot be covered by nonempty disjoint sets A and
B, which are open in S.

5. Limits of sequences and functions

5.1. Limit of sequence of complex numbers. A sequence of complex numbers (zn) converges
to z0, written

z0 = lim
n→∞

zn, or zn → z0, n→∞,

if the distance |zn − z0| converges to 0. The latter is equivalent to the real and imaginary parts
Re zn, Im zn converging to Re z0, Im z0 respectively.

5.2. Cauchy’s criterion. A sequence (zn) is convergent (converges to some limit) if and only if
for every ε > 0, there is N such that for all m,n ≥ N , one has |zm − zn| < ε. This criterion for
complex sequences can be derived from the analogous criterion for real sequences.
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5.3. Limits of functions. Limits of functions can be considered for functions defined on subsets
S ⊂ C at their limit points. Recall that a point a ∈ C is a limit point of S if every punctured
disk ∆ε(a)\{a} contains a point of S (which implies that every punctured disk contains infinitely
many points of S). Note that a limit point of S does not need to belong to S.

If a is a limit point of S, then L is the limit of a function f : S → C if and only if for every
ε > 0, there exists δ > 0 such that z ∈ ∆δ(a) ∩ S implies |f(z)− L| < ε.
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