Course 2328 Complex Analysis I

Sheet 2

Due: Thursday, at the end of the lecture on Thursday of the next week

Exercise 1

Using the definition show:

- (i) Finite intersections and arbitrary unions of open sets are open.
- (ii) Finite unions and arbitrary intersections of closed sets are closed.
- (iii) Arbitrary union of connected sets containing a common point is connected.

Exercise 2

- (i) If Ω is open in \mathbb{C} and $A \subset \mathbb{C}$ any subset, then $\Omega \cap A$ is open in A.
- (ii) If $A \subset \mathbb{C}$ is any subset and U is open in A, then there exists Ω open in \mathbb{C} with

$$\Omega \cap A = U.$$

Hint. Use the definition and construct Ω as union of disks.

Exercise 3

Give examples of:

- (i) Infinite intersections of open sets that is not open.
- (ii) Infinite union of closed sets that is not closed.
- (iii) Intersection of two connected sets containing a common point that is not connected.

Exercise 4

Consider the sequence of holomorphic functions $f_n(z) = z^2 - \frac{1}{n}$.

- (i) Is the sequence (f_n) converging uniformly on \mathbb{C} ?
- (ii) Is the sequence of squares (f_n^2) converging uniformly on \mathbb{C} ?

(iii) Is the sequence of squares (f_n^2) converging uniformly on the unit disk in \mathbb{C} ? Justisfy your answer.

Exercise 5

For which z does the sequence converge:

- (i) $f_n(z) = e^{nz};$
- (ii) $f_n(z) = \sin(nz)$.

Exercise 6

For which z does the series converge:

- (i) $\sum_n z^{n^2}$,
- (ii) $\sum_{n} \frac{z^{n+n^2}}{n^2}$, (iii) $\sum_{n} \frac{1}{z^n n}$.

Which are power series? Justisfy your answer.

Exercise 7

Let $f: \Omega \to \mathbb{C}$ be holomorphic. Define the new function \overline{f} by $\overline{f}(z) := \overline{f(\overline{z})}$. Show that \overline{f} is holomorphic on the open set $\overline{\Omega} := \{\overline{z} : z \in \Omega\}.$

Exercise 8

Use the Cauchy-Riemann equations to decide which of the following functions are holomorphic:

 $(\mathrm{Im}z)^2, \quad iz\bar{z}, \quad \bar{z}^2+z, \quad e^{10z}, \quad e^{\bar{z}}.$

Exercise 9

Using the Cauchy-Riemann equations, show:

- (i) if a holomorphic function f satisfies Im f = const, then f = const.
- (ii) if f = u + iv is holomorphic and $a, b \in \mathbb{C} \setminus \{0\}$ are such that au + bv = const, then again f = const.