Course 2325 2012 Complex Analysis I

Sheet 1

Due: at the end of the lecture on Wednesday of the next week

Exercise 1

Find zw, z/w, z^{100} , for (i) z = 1 - i, w = 2i + 5. (ii) z = -i, w = i + 5.

Exercise 2

Find log z, Log z and \sqrt{z} for (i) z = -2i; (ii) z = -1 - i; (iii) $z = 2/(1 - \sqrt{3}i)$.

Exercise 3

Prove that $\operatorname{Im}(iz) = \operatorname{Re}z$, $\operatorname{Re}(iz) = -\operatorname{Im}z$, $e^{\overline{z}} = \overline{e^z}$, $e^{-z} = \frac{1}{e^z}$.

Exercise 4

(i) Show that $\log(z_1 z_2) = \log z_1 + \log z_2$ as sets.

- (ii) Show that $\text{Log}(z_1z_2) = \text{Log}z_1 + \text{Log}z_2$ provided $-\pi < \text{Arg}z_1 + \text{Arg}z_2 < \pi$.
- (iii) Give an example of z_1, z_2 with $Log(z_1z_2) \neq Log z_1 + Log z_2$.

Exercise 5

Using the definition show:

- (i) Finite intersections and arbitrary unions of open sets are open.
- (ii) Finite unions and arbitrary intersections of closed sets are closed.

Exercise 6

Construct a branch of $\log z$ on the set $\mathbb{C} \setminus \{-iy : y \ge 0\}$. Show that the branch you constructed is indeed continuous.

Exercise 7

Sketch the set of points give by the condition:

 $\begin{array}{ll} ({\rm i}) & 1 < |z| < 3; \\ ({\rm ii}) & 1 < |z - 2i| < 2; \\ ({\rm iii}) & {\sf Re}((1-i)\bar{z}) \geq -1. \end{array}$