Course 23252012 Complex Analysis I

Sheet 1

Exercise 1

Find $z w, z / w, z^{100}$, for
(i) $z=1-i, w=2 i+5$.
(ii) $z=-i, w=i+5$.

Exercise 2

Find $\log z, \log z$ and \sqrt{z} for
(i) $z=-2 i$;
(ii) $z=-1-i$;
(iii) $z=2 /(1-\sqrt{3} i)$.

Exercise 3

Prove that $\operatorname{Im}(i z)=\operatorname{Re} z, \quad \operatorname{Re}(i z)=-\operatorname{Im} z, \quad e^{\bar{z}}=\overline{e^{z}}, \quad e^{-z}=\frac{1}{e^{z}}$.

Exercise 4

(i) Show that $\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}$ as sets.
(ii) Show that $\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}$ provided $-\pi<\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}<\pi$.
(iii) Give an example of z_{1}, z_{2} with $\log \left(z_{1} z_{2}\right) \neq \log z_{1}+\log z_{2}$.

Exercise 5

Using the definition show:
(i) Finite intersections and arbitrary unions of open sets are open.
(ii) Finite unions and arbitrary intersections of closed sets are closed.

Exercise 6

Construct a branch of $\log z$ on the set $\mathbb{C} \backslash\{-i y: y \geq 0\}$. Show that the branch you constructed is indeed continuous.

Exercise 7

Sketch the set of points give by the condition:
(i) $1<|z|<3$;
(ii) $1<|z-2 i|<2$;
(iii) $\operatorname{Re}((1-i) \bar{z}) \geq-1$.

