Course 2325 2012 Complex Analysis I

Sheet 2

Due: at the end of the lecture on Wednesday of the next week

Exercise 1

For what z does the series converge:

- (i) $\sum_n z^{2^n}$,
- (ii) $\sum_{n} \frac{z^{2^n}}{n^2}$,
- (iii) $\sum_{n} \frac{1}{z^n+1}$.

Which are power series? Justisfy your answer.

Exercise 2

Consider the sequence of holomorphic functions $f_n(z) = z + \frac{1}{n^2}$.

- (i) Is the sequence (f_n) converging uniformly on \mathbb{C} ?
- (ii) Is the sequence of squares (f_n^2) converging uniformly on \mathbb{C} ? Justisfy your answer.

Exercise 3

Use the Cauchy-Riemann equations to decide which of the following functions are holomorphic:

$${\rm Re}z,\quad i|z|^3,\quad \bar{z}^2,\quad e^{2z},\quad e^{\bar{z}}.$$

Exercise 4

Let $f: \Omega \to \mathbb{C}$ be holomorphic. Define the new function \bar{f} by $\bar{f}(z) := \overline{f(\bar{z})}$. Show that \bar{f} is holomorphic on the open set $\bar{\Omega} := \{\bar{z} : z \in \Omega\}$.

Exercise 5

Using the Cauchy-Riemann equations, show:

- (i) if a holomorphic function f satisfies Im f = const, then f = const.
- (ii) if f = u + iv is holomorphic and $a, b \in \mathbb{C} \setminus \{0\}$ are such that au + bv = const, then again f = const.