23204 Introduction to Complex Analysis

Exercise 1

Let γ be the piecewise affine path representing the oriented boundary of the triangle with vertices

$$-1, 2iy, 1,$$

where y is a fixed parameter.

- (i) Write an explicit parametrization for γ ;
- (ii) For every y, evaluate the integrals $\int_{\gamma} z \, dz$ and $\int_{\gamma} \bar{z} \, dz$. Which of the integrals is independent of y?
- (iii) Use (ii) to show that the conclusion of Cauchy's theorem does not hold for $f(z) = \overline{z}$.

Exercise 2

Calculate $\int_{\gamma} f(z) dz$, where (i)

$$f(z) = \frac{2}{z} - \frac{1}{z^2}, \quad \gamma(t) = ce^{it}, \quad 0 \le t \le 2\pi.$$

(ii)

$$f(z) = \frac{2}{z} - \frac{1}{z^2}, \quad \gamma(t) = ce^{it}, \quad 0 \le t \le \pi.$$

(iii)

$$f(z) = \frac{2}{z} - \log z, \quad \gamma(t) = ce^{it}, \quad -\pi/2 \le t \le \pi/2.$$

Exercise 3

- (i) Use 2(i) to show that f(z) does not have an antiderivative in its domain of definition.
- (ii) Does $f(z) = \frac{1}{z^n}$ have an antiderivative, where $n \ge 2$ is an integer?
- (iv) Give an example of an open set Ω , where the function $f(z) = \frac{1}{z(z-1)^2}$ does not have an antiderivative.

Justify your answer.