23204 Introduction to Complex Analysis

Sheet4

Exercise 1

Consider the sequence of holomorphic functions $f_n(z) = z + \frac{1}{n^2}$.

(i) Is the sequence (f_n) converging uniformly on \mathbb{C} ?

(ii) Is the sequence of squares (f_n^2) converging uniformly on \mathbb{C} ? Justify your answer.

Exercise 2

Which of the following functions are holomorphic on their domain of definition:

 $z^2 \sin z$, $(\text{Re}z)^2$, $z + \bar{z}^2$, $e^{z\bar{z}}$, $e^{|z|^2/\bar{z}}$?

Exercise 3

Using the Cauchy-Riemann equations, show:

- (i) if a holomorphic function f satisfies Ref = const, then f = const.
- (ii) if f = u + iv is holomorphic and $a, b \in \mathbb{C} \setminus \{0\}$ are such that au + bv = const, then again f = const.