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1. The origin of complex numbers

1.1. Solving quadratic equation. The simplest quadratic equation
having no real solutions is

x2 + 1 = 0.

Trying to solve it, we have to introduce the symbol i =
√
−1. As we also

want to add and multiply, we are lead to consider formal expressions

z = a+ ib, a, b ∈ R,
where a and b are arbitrary real numbers. We call z a complex number
and write

a = Re z, b = Im z

for the real and imaginary parts of z.
More formally, the expression a + ib is a way to write the pair (a, b),

that is more convenient to define algebraic operations than using pairs.
Introducing i may appear artificial and is not relevant to the problem

of finding real solutions. In fact, solution of quadratic equation was known
to the ancient Greeks, who never came across complex numbers nor felt
any need for it.

1.2. Cubic equation and Cardano’s formula. In contrast to qua-
dratic equations, solving a cubic equation even over reals forces you to
pass through complex numbers. In fact, this is how complex numbers
were discovered.

Consider the general cubic equation

a3x
3 + a2x

2 + a1x+ a0 = 0, a3 6= 0.

Dividing by a3 we can reduce it to

x3 +
a2

a3

x2 +
a1

a3

x+
a0

a3

= 0.

Using binomial formula (x+y)3 = x3 +3x2y+3xy2 +y3, we can eliminate
the term with x2 by rewriting it as

(x+
a2

3a3

)3 + p(x+
a2

3a3

) + q = 0

for suitable p and q, or after the change of variable y = x+ a2
3a3

,

(1.1) y3 + py + q = 0.
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Cardano’s formula for solving (1.1) is

y = u+v, u = 3

√
−q

2
+
√
D, v = 3

√
−q

2
−
√
D, D =

(q
2

)2

+
(p

3

)3

,

such that u, v satisfy

(1.2) uv = −p
3
.

Condition (1.2) is sometimes forgotten when Cardano’s formula is stated,
but is essential and cannot be dropped, or else the formula gives other
values of y that are not among solutions of (1.1).

The main difference from the quadratic equation formula is the fact
that, in Cardano’s formula, we may need to use in our calculations com-
plex numbers even when the final result is real. We illustrate this by a
simple example.

1.3. Example of using Cardano’s formula. Consider the cubic equa-
tion

x3 − 3x = 0.

Since x3 − 3x = x(x−
√

3)(x+
√

3), we have 3 real solutions

x = 0,±
√

3.

Now in Cardano’s formula we have p = −3, q = 0, D = −1, and hence

u =
3

√√
−1, v =

3

√
−
√
−1.

Thus, even if all solutions are real, we need to evaluate
√
−1 and then

take cubic roots! We shall now introduce the necessary tools to complete
the calculation.

2. Algebraic operations for complex numbers

2.1. Addition and multiplication. Using the rule i2 = −1 we can
define addition and multiplication of complex numbers:

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2),

(a1+ib1)(a2+ib2) = (a1a2)+i(a1b2+a2b1)+i2(b1b2) = (a1a2−b1b2)+i(a1b2+a2b1).

Both addition and multiplication are commutative and associative

(1) commutativity: z1 + z2 = z2 + z1, z1z2 = z2z1;
(2) associativity: (z1 + z2) + z3 = z1 + (z2 + z3), (z1z2)z3 = z1(z2z3).

Both addition and multiplication have the identity elements - 0 and 1
respectively, i.e.

(1) additive identity: z + 0 = 0 + z = z;
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(2) multiplicative identity: 1z = z1 = z.

Every z = a+ ib has the additive inverse

−z = (−a) + i(−b) =⇒ z + (−z) = (a− a) + i(b− b) = 0,

showing that complex numbers form a commutative group with respect
to addition. For the multiplicative inverse, it is convenient to use complex
conjugates.

2.2. The complex conjugate. The complex conjugate of z = a + ib is
given by

z̄ = a− ib,
from where we have formulas for the real and imaginary parts:

a = Re z =
z + z̄

2
, b = Im z =

z − z̄
2i

.

We also have the important formula

(2.1) zz̄ = (a+ ib)(a− ib) = a2 + b2.

The conjugation defines both additive and multiplicative automorphism
in the sense that

z1 + z2 = z̄1 + z̄2, z1z2 = z̄1z̄2,

and is an involution, i.e. applying conjugation twice returns z:

z = z.

These properties of the conjugation often significantly simplify compu-
tations.

2.3. Division. We can use conjugates and formula (2.1) for division:

a1 + ib1

a2 + ib2

=
(a1 + ib1)(a2 − ib2)

(a2 + ib2)(a2 − ib2)
=

(a1a2 + b1b2) + i(a2b1 − a1b2)

a2
2 + b2

2

.

Thus we can always divide by the complex number a2 + ib2 different from
zero for which a2

2 + b2
2 6= 0.

In particular, every z = a+ ib 6= 0 has the multiplicative inverse

z−1 =
1

z
=

z̄

zz̄
=
a2 − ib2

a2
2 + b2

2

=⇒ zz−1 = z−1z = 1.

Finally, the distributive law holds as well for complex numbers:

z1(z2 + z3) = z1z2 + z1z3.

Consequently, complex numbers together with addition and multiplica-
tion form a field, denoted by C.
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3. The complex plane

3.1. Cartesian coordinates. Since formally the complex number z =
x + iy is the pair (x, y), we can identify z with the point (x, y) of the
2-dimensional coordinate plane:

Real axis

Imaginary axis

z = x+ iy ←→ (x, y)

x

y

With that geometric interpretation, the addition of complex numbers
corresponds to the vector addition:

z

w

z + w

The conjugation z → z̄ of complex numbers corresponds geometrically
to the reflection about the x-axis:

z = x+ iy

z̄ = x− iy

While cartesian coordinates are convenient for addition, multiplication
is move conveniently expressed by means of the polar form.

3.2. The polar form. Using polar coordinates in the complex plane,
any complex number z = a+ ib can be written in its polar form as



8 D. ZAITSEV

z = r(cos θ + i sin θ)

r

θ

where

(3.1) r = |z| =
√
a2 + b2 =

√
zz̄ ≥ 0

is the modulus or absolute value of z and θ is the argument of z, defined
for z 6= 0 and satsifying

cos θ =
a

r
, sin θ =

b

r
, tan θ =

b

a
(for a 6= 0).

Note that for z = 0, the argument θ is not defined, and for z 6= 0, the
argument is not unique! It is defined up to a multiple of 2π. In particular,
for z 6= 0, we can always choose θ uniquely in the interval (−π, π], which
we call the principal argument and denote by Arg z. By arg z we denote
the set of all possible arguments, i.e.

arg z = {Arg z + 2πk : k ∈ Z}.

The modulus |z| given by (3.1) satisfy the important properties of a
norm:

(1) positivity: |z| ≥ 0 and |z| = 0 ⇐⇒ z = 0;
(2) multiplicativity: |zw| = |z||w|;
(3) triangle inequality: |z + w| ≤ |z|+ |w|.

Proof. Here (1) follows directly from (3.1) and (2),(3) follow from the
automorphism properties of the conjugation

|zw| =
√
zwzw =

√
zwz̄w̄ =

√
zz̄
√
ww̄ = |z||w|,

|z + w|2 = (z + w)(z + w) = (z + w)(z̄ + w̄) = zz̄ + ww̄ + zw̄ + z̄w

= |z|2+|w|2+2Re(zw̄) ≤ |z|2+|w|2+2|zw̄| = |z|2+|w|2+2|z||w| = (|z|+|w|)2,

where we used the inequality

Re ζ = a ≤
√
a2 + b2 = |ζ|

for any complex number ζ = a+ ib. �
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3.3. Euler’s formula. We can use the Euler’s formula

(3.2) eiθ = cos θ + i sin θ,

to rewrite the polar form as

z = reiθ.

Here (3.2) can be viewed as the definition extending the exponential
function of imaginary arguments iθ, preserving the basic homomorphism
property

ei(θ+ϕ) = eiθeiϕ,

which expands to

(3.3) cos(θ + ϕ) + i sin(θ + ϕ) = (cosθ + i sin θ)(cosϕ+ i sinϕ),

with the right-hand side

(cos θ cosϕ− sin θ sinϕ) + i(sin θ cosϕ+ cos θ sinϕ)

equal to the left-hand side of (3.3) by standard trigonometric identities.
In polar form, multiplication and division look particularly simple:

(r1e
iθ1)(r2e

iθ2) = r1r2e
i(θ1+θ2),

r1e
iθ1

r2eiθ2
=
r1

r2

ei(θ1−θ2).

The first formula can be iterated to obtain de Moivre’s formula:

(reiθ)n = rneinθ,

which can be used for calculating the nth roots:
(3.4)

n
√
reiθ = n

√
rei

θ+2πk
n = n

√
r

(
cos

θ + 2πk

n
+ i sin

θ + 2πk

n

)
, k ∈ Z.

Note that θ is always defined up to a multiple of 2π, i.e.

eiθ = eiϕ ⇐⇒ θ = ϕ+ 2πk, k ∈ Z,

and hence the addition of 2πk is essential in the formula, but it suffices
to take in (3.4) only finitely many values

k = 0, . . . , n− 1,

to obtain all n values of the nth root n
√
z.

These n values have all the same modulus, while their arguments are
distinct for z 6= 0. Thus, the nth root of z 6= 0 has precisely n values all
contained in the circle with center 0 and radius n

√
|z|.
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An important special case is that of the nth roots of unity, which are
the nth roots of 1, i.e. complex numbers z satisfying zn = 1. From (3.4)
for z = 1, we compute all nth roots of unity as

(3.5) εk := ei
2πk
n , k = 0, 1, . . . , n− 1.

Geometrically the roots of unity are located on the unit circle:

1 = ε0

ε1

ε2ε3

ε4

εn−1

Using (3.5), we can rewrite (3.4) as

n
√
z = n
√
rei

θ
n εk, k = 0, 1, . . . , n− 1,

i.e. all n values of the root n
√
z can be obtained by taking one root’s value

w0 := n
√
rei

θ
n and multiplying with all nth roots of unity εk:

n
√
rei

θ
n = w0

w0ε1
w0ε2

w0ε3

w0ε4

w0εn−1

3.4. Completing our example of using Cardano’s formula. We
can now complete our calculation in the example of using Cardano’s
formula in §1.3. We have the polar form

i = ei
π
2

and hence

u =
3
√
i = cos

π/2 + 2πk

3
+ i sin

π/2 + 2πk

3
, k = 0, 1, 2.

Calculating we obtain the values

u =

√
3

2
+ i

1

2
, −

√
3

2
+ i

1

2
, −i.

Similarly,

v = 3
√
−i = cos

−π/2 + 2πk

3
+ i sin

−π/2 + 2πk

3
, k = 0, 1, 2,
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which yields

v =

√
3

2
− i1

2
, −

√
3

2
− i1

2
, i.

Finally, according to the rule (1.2), we only consider x = u + v for u, v
satisfying uv = −p/3, i.e. uv = 1 in our case. Hence we can only combine
the first, second and third values of u with the first, second and third
values of v respectively, which yields the three solutions

x = u+ v =
√

3, −
√

3, 0.

Note that without the rule (1.2), we would e.g. add the first value of u
with the third value of v giving

x =

√
3

2
+ i

3

2
,

which is not a solution of our equation (1.1).

4. Elementary functions of a complex variable

4.1. Polynomials and rational functions. Similar to real polynomi-
als, using complex addition and multiplication, we can define a complex
polynomial function

f(z) = anz
n + . . .+ a1z + a0, a0, . . . , an, z ∈ C,

which has degree n if an 6= 0. In particular, a polynomial of degree 1 is
an affine function f(z) = a1z + a0.

A rational function is a ratio of two polynomials

f(z) =
p(z)

q(z)
, q 6≡ 0,

which is defined whenever q is not zero, i.e. for z ∈ C with q(z) 6= 0.

4.2. Exponential and logarithm functions. The exponential func-
tion of complex variable z = x+ iy can be defined by Euler’s formula

ex+iy := ex(cos y + i sin y) = exeiy.

For y = 0, we obtain the real exponential function ex, i.e. ez extends ex

to the complex plane.
The fundamental homomorphism property ex1+x2 = ex1ex2 extends to

complex variables:

e(x1+iy1)+(x2+iy2) = ex1+x2ei(y1+y2) = ex1ex2eiy1eiy2 = ex1+iy1ex2+iy2 ,

i.e.
ez1+z2 = ez1ez2 , z1, z2 ∈ C.
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The (natural) logarithm function is defined as inverse of the exponen-
tial function, i.e.

w = log z ⇐⇒ z = ew.

Writing w = x+ iy and z = reiθ,

z = ew ⇐⇒ reiθ = ex+iy = exeiy ⇐⇒ r = ex, y = θ + 2πk, k ∈ Z.

Since r = |z| and {θ + 2πk, k ∈ Z} = arg(z), we obtain the explicit
formula for the logarithm function

log z = ln |z|+ i arg z, z ∈ C \ {0}.

Note that log z is multi-valued since arg z is! Taking the principal value
Argz we can define the principal value of the logarithm

Logz := ln |z|+ iArgz.

4.3. General power function. Using exponential and logarithm we
can define the general power

zw := ew log z, z, w ∈ C, z 6= 0.

Since log z is multi-valued, so is zw, at least a priori. That is, it may hap-
pen that after substituting multiple values of w log z into the exponential
function, the result may be single-valued. This happens when w = n is an
integer, in which case all values coincide with the nth power of z = reiθ:

zn = en log z = en(ln r+iθz+2πik) = eln rneniθe2πikn = (reiθ)n = zn, k ∈ Z,

i.e. the integer power agrees with the usual definition of the power. More
generally, a rational power of z = reiθ attains finitely many values that
can be computed as roots:

zp/q = ep log z/q = e
p
q

(ln r+iθz+2πik) = eln rp/qe
p
q

(iθ+2πik) = (
q
√
reiθ)p = ( q

√
z)p.

Here some of the pth powers of different values of q
√
z may coincide when

p and q have nontrivial common divisors.

Example 4.1. Writing z = −1 in the polar form −1 = eiπ we have

(−1)2/4 = ( 4
√
−1)2 = (ei(π+2πik)/4)2 = e2i(π+2πik)/4 = ei(π+2πik)/2 = ±eiπ/2 = ±i,

since eiπk = ±1 for k ∈ Z. To obtain all 4 roots 4
√
−1 we need to take

k = 0, 1, 2, 3 but only 2 values remains after taking the square.



13

4.4. Trigonometric and inverse trigonometric functions. In real
analysis, trigonometric functions sin and cos are very different from the
exponential functions. In complex analysis, they are closely related. From
Euler’s formula, we have

eix = cosx+ i sinx, e−ix = cosx− i sinx.

Adding and subtracting, we obtain

cosx =
eix + e−ix

2
, sinx =

eix − e−ix

2i
.

Using these formulas we can extend sin and cos to arbitrary complex
argument z:

(4.1) cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

Now standard trigonometric identities can be proved directly, e.g.

cos2 z + sin2 z =
(eiz + e−iz)2

4
+

(eiz − e−iz)2

−4

=
(e2iz + 2 + e−2iz)− (e2iz − 2 + e−2iz)

4
= 1.

Restricting cosine and sine to the imaginary axis z = iy, we obtain
respectively the hyperbolic cosine and sine:

cos(iy) =
e−y + ey

2
= cosh y, sin(iy) =

e−y − ey

2i
= i sinh y.

This shows that the behavior of cos and sin along the imaginary axis
is very different from the real axis. In particular, both cos and sin are
unbounded on the y-axis because the hyperbolic cosine and sine are un-
bounded on the real axis.

Using the exponential function ez for z ∈ C, we also can define the
hyperbolic sine and cosine for complex arguments reusing the same for-
mulas:

cosh z :=
ez + e−z

2
, sinh z :=

ez − e−z

2
.

Finally, formulas (4.1) allow to compute the inverse trigonometric
functions, e.g.

w = arccos z ⇐⇒ z = cosw =
eiw + e−iw

2
⇐⇒ e2iw − 2zeiw + 1 = 0.

Solving the quadratic equation, we obtain an explicit formula for arccos z:

(4.2) eiw = z +
√
z2 − 1 ⇐⇒ w = arccos z =

1

i
log(z +

√
z2 − 1).
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Note that we don’t need ± before the square root when solving the
quadratic equation, since the square root of a complex number already
takes 2 values of the form ±a, where a is one of the root values. In
addition, taking log in (4.2) yields infinitely many values for each value
of the square root.

5. Metric and topology in complex plane

5.1. Metric space structure. We have seen that the modulus |z| de-
fines a norm on C. Then, every norm defines a metric, in our case the
distance between z, w ∈ C is given by

d(z, w) = |z − w|.
We can now use the properties of the norm to show that the standard
metric axioms are satisfied:

(1) positivity: |z − w| ≥ 0 and |z − w| = 0 ⇐⇒ z = w;
(2) symmetry: |z − w| = |w − z|;
(3) triangle inequality: |z1 − z3| ≤ |z1 − z2|+ |z2 − z3|.

5.2. Open disks. In the sequel denote by

∆r(a) := {z ∈ C : |z − a| < r}
the (open) disk with center a ∈ C and radius r > 0.

5.3. Open sets.

Definition 5.1. (1) A subset U ⊂ C is open (in C) if every point
z0 ∈ U can be surrounded by disk ∆ε(z0) ⊂ U for some ε > 0.

(2) More generally, a subset A ⊂ S is open in a set S ⊂ C (briefly
open in S, also open in the relative topology of S) if for every
z0 ∈ A, there exists ε > 0 with

∆ε(z0) ∩ S ⊂ A.

z0

ε

U

∆ε(z0)
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It is straightforward to check that arbitrary unions
⋃
α∈A Uα and finite

intersections U1 ∩ · · · ∩Un of open sets (in a set S) are open (in a set S).
On the other hand, infinite intersections of open sets may not be open.

Example 5.2. Every open disk ∆r(a) with r > 0 is open. Indeed, for every
z0 ∈ ∆r(a), take ε := r − |z0 − a|. Then

z ∈ ∆ε(z0) =⇒ |z − a| ≤ |z − z0|+ |z0 − a| < ε+ |z0 − a| = r,

proving that z0 is surrounded by the disk ∆ε(z0) ⊂ ∆r(a).

Example 5.3. The infinite intersection of open disks
∞⋂
n=1

∆1/n(0) = {0}

is not open, since 0 cannot be surrounded by a disk ∆ε(0) with ε > 0
contained in this intersection.

Example 5.4. Any interval (a, b) is open in R but not in C. Indeed, for
every x ∈ (a, b), taking ε := min(|x− a|, |x− b|), we have

R ∩∆ε(x) ⊂ (a, b),

proving that (a, b) is open in R. On the other hand, (a, b) cannot contain
an entire disk ∆ε(x), ε > 0, proving that (a, b) is not open (in C).

5.4. Closed sets. A set F ⊂ S is closed in S if S \ F is open in S.
Using analogous properties of open sets it is easy to see that arbitrary
intersections and finite unions of closed sets in S are closed in S. The
proof is based on the formulas

S \ (
⋂
α∈A

Fα) =
⋃
α∈A

(S \Fα), S \ (F1∪· · ·∪Fn) = (S \F1)∩· · ·∩ (S \Fn).

5.5. Interior, exterior and boundary of a subset. The following
fundamental notions are defined for every subset in C:

Definition 5.5. Let A ⊂ C be a subset and z0 ∈ C.

(1) z is an interior point of A if ∆ε(z) ⊂ A for some ε > 0; the
interior of A is the set of all interior points;

(2) z is an exterior point of A if ∆ε(z) ⊂ C \ A for some ε > 0; the
exterior of A is the set of all exterior points;

(3) z is a boundary point of A if it neither interior nor exterior, i.e.
if for all ε > 0, the disk ∆ε(z) contains points of both A and the
complement C\A; the boundary ∂A of A is the set of all boundary
points;

(4) the closure A of A is the union of its interior and boundary.
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It follows directly that interior and exterior are unions of disks, hence
is always open, while the closure is the complement of the exterior, hence
is always closed.

Example 5.6. Let A = ∆r(a) = {z : |z − a| < r} be a disk. Then the
interior of A is A, the exterior is {z : |z − a| > r}, the boundary is the
circle

∂A = {z : |z − a| = r},
and the closure is the closed disk

A = {z : |z − a| ≤ r}.

5.6. Connected sets.

Definition 5.7. A set S ⊂ C is connected if it cannot be covered by
disjoint open sets U and V such that U ∩ S 6= ∅, V ∩ S 6= ∅.

Example 5.8. The union of disks

∆1(−1) ∪∆1(1)

is not connected, because it is covered by the disjoint open sets

U = ∆1(−1), V = ∆1(1) :

−1 1

Lemma 5.9. Any closed interval I = [a, b] ⊂ R is connected.

Proof. Assume by contradiction, I can be covered by disjoint open subsets
U, V as in Definition 5.7. Without loss of generality, b ∈ V and set

(5.1) c := sup(U ∩ [a, b]) ∈ [a, b].

Then either c ∈ U or c ∈ V . If c ∈ U , since U is open, there is a disk
∆ε(c) ⊂ U , which contradicts (5.1). Alternatively, if c ∈ V , since V
is open, there is a disk ∆ε(c) ⊂ V , which again contradicts (5.1) since
U ∩ V = ∅. �

5.7. Bounded sets.

Definition 5.10. A subset B ⊂ C is bounded if it is contained in some
disk ∆r(a).
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B

a

r

Example 5.11. An interval [a, b] ⊂ R and a rectangle

{z : C : x1 ≤ Re z ≤ x2, y1 ≤ Im z ≤ y2}

are bounded, while R, C and the upper half-plane

{z ∈ C : Im z > 0}
are not bounded.

5.8. Compact sets.

Definition 5.12. Let S ⊂ C be a subset.

(1) An open cover of S is a collection of open subsets Uα ⊂ C whose
union contains S, i.e. S ⊂

⋃
α Uα.

(2) A subcover of a cover S ⊂
⋃
α∈A Uα is any subcollection that still

forms a cover, i.e. a subset of indices B ⊂ A with S ⊂
⋃
α∈B Uα.

(3) S is said to be compact if every open cover S ⊂
⋃
α∈A Uα has a

finite subcover, i.e. S ⊂ Uα1∪· · ·∪Uαn for some n and α1, . . . , αn ∈
A.

Theorem 5.13. Any compact set in C is bounded.

Proof. Let S ⊂ C be compact. Consider the cover S ⊂
⋃
z∈S ∆1(z) by

open disks with radius 1 and centers in S. Since S is compact, this cover
has a finite subcover

S ⊂ ∆1(z1) ∪ · · · ∪∆1(zn).

Without loss of generality, S is nonempty and hence n ≥ 1. Setting

R := max{|z1 − zk| : 1 ≤ k ≤ n}, it follows that
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z ∈ ∆1(zk) =⇒ |z−z1| ≤ |z−zk|+ |zk−z1| < 2+R =⇒ z ∈ ∆R+2(z1)

proving S ⊂ ∆R+2(z1) =⇒ S is bounded. �

The role of compactness is passing from local to global as is well illus-
trated by the following lemma.

Lemma 5.14 (uniform radius for disks). Let U ⊂ C be an open subset,
K ⊂ U a compact set. Then there exists r > 0 such that ∆r(z) ⊂ U for
all z ∈ K.

Proof. By definition, every point z of the open set U is surrounded by
a disk ∆r(z)(z) ⊂ U , where the radius r(z) > 0 may depend on z. In
particular, the set K ⊂ U is covered by the disks ∆r(z)(z) for z ∈ K, and
even by the half-radius disks

K ⊂
⋃
z∈K

∆ r(z)
2

(z).

By definition of compactness, we can pass to a finite subcover

K ⊂ ∆r(z1)/2(z1) ∪ · · · ∪∆r(zn)/2(zn)

for some points z1, . . . , zn ∈ K. Then we claim that

r := min{r(z1)/2, . . . , r(zn)/2}

satisfies the conclusion of the lemma. Indeed, each z ∈ K is covered by
at least one ∆r(zj)/2(zj) and then, since r ≤ r(zj)/2,

∆r(z) ⊂ ∆r(zj)/2(z) ⊂ ∆r(zj)(zj) ⊂ U,

where the 2nd inclusion follows from the triangle inequality

w ∈ ∆ r(zj)

2

(z) =⇒ |w− zj| ≤ |w− z|+ |z − zj| <
r(zj)

2
+
r(zj)

2
= r(zj).

�

Without proof we quote the following fundamental result proved in
modules on metric spaces and topology:

Theorem 5.15 (Heine-Borel theorem in C). A subset S ⊂ C is compact
if and only if S is both bounded and closed in C.
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6. Sequences of complex numbers

6.1. Limits of sequences of complex numbers. A sequence of com-
plex numbers (zn)n≥1 converges to z0, written

z0 = lim
n→∞

zn, or zn → z0, n→∞,

if the distance |zn − z0| converges to 0. Here the important difference
is that |zn − z0| is a sequence of real numbers, whose convergence is be
defined in real analysis. More explicitly, expanding the definition, we
obtain:

Definition 6.1. A sequence (zn) converges to z0 as n → ∞ whenever
for any ε > 0 there exists integer N ≥ 1 such

(6.1) n ≥ N =⇒ |zn − z0| < ε.

Example 6.2. Consider the sequence of powers zn = an, n ≥ 1, of a fixed
complex number a. If |a| < 1, then zn → 0:

|zn − 0| = |an| = |a|n → 0, n→∞.

Convergence of sequences of complex numbers is equivalent to conver-
gence of both sequences of their real and imaginary parts:

Lemma 6.3. A sequence of complex numbers (zn) converges to z0 as
n→∞ if and only if

Re zn → Re z0, Im zn → Im z0, n→∞.

The proof follows from the estimates

|Re zn − Re z0| ≤ |zn − z0|, |Im zn − Im z0| ≤ |zn − z0|,
and the formula

|zn − z0| =
√
|Re zn − Re z0|2 + |Im zn − Im z0|2.

6.2. Limits of sums, products and ratios of sequences.

Lemma 6.4. Let

an → a, bn → b, n→∞,
be convergent sequences. Then

(an + bn)→ (a+ b), (an − bn)→ (a− b), anbn → ab, n→∞.
If in addition b 6= 0 and bn 6= 0 for all n, then

an
bn
→ a

b
, n→∞.

The proof is analogous to the case of real sequences from real analysis.
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6.3. Bounded sequences.

Definition 6.5. A sequence (zn) is bounded if there exists C > 0 with
|zn| ≤ C for all n.

Lemma 6.6. Any convergent sequence is bounded.

Proof. Let zn → z0, n → ∞, be a convergent sequence. Taking ε = 1
in Definition 6.1, there exists N such that (6.1) holds. Then the triangle
inequality yields

|zn| = |zn − z0 + z0| ≤ |zn − z0|+ |z0| < ε+ |z0| = 1 + |z0|
for n ≥ N , and we can take

C = 1 + |z0|+ max{|zn| : 1 ≤ n < N}
in Definition 6.5 to conclude (zn) is bounded. �

Example 6.7. The sequence of powers zn = an is unbounded for |a| > 1,
since in this case |an| = |a|n →∞, n→∞. Therefore, the sequence (zn)
is divergent, i.e. cannot have a finite limit.

On the other hand, we can define the notion of convergence to∞ which
is satisfied in this case:

Definition 6.8. A sequence of complex numbers (zn) is said to converge
to ∞ as n→∞, written

zn →∞, n→∞,
whenever |zn| → ∞, n→∞.

6.4. Cauchy sequences and Cauchy’s criterion. A sequence is con-
vergent if it has a limit. However, the definition of convergence requires
knowledge of the limit.

Cauchy’s criterion is an elegant way of expressing convergence without
referring to the limit.

Definition 6.9. A sequence (zn) is a Cauchy sequence if for every ε > 0
there exists N such that

m,n ≥ N =⇒ |zm − zn| < ε.

Theorem 6.10 (Cauchy’s criterion). A sequence (zn) is convergent (con-
verges to some limit) if only if it is a Cauchy sequence.

This criterion for a complex sequence (zn) can be derived from the
analogous criterion from real analysis for the sequences of real numbers
(Re zn) and (Im zn).



21

7. Series of complex numbers

7.1. Convergence of series. A complex series is a formal sum

(7.1)
∑
n≥1

an = a1 + a2 + . . .

where an are arbitrary complex numbers.

Definition 7.1. The sequence of partial sums of (7.1) is

sn := a1 + . . .+ an,

and the series (7.1) is said to converge to a complex number z0 whenever
the sequence (sn) of partial sums converges to z0 as n → ∞. A series
which is not convergent to any finite complex number is called divergent.

Example 7.2. Let a ∈ C. The complex geometric series
∑∞

n=0 a
n con-

verges to 1
1−a when |a| < 1. The proof is based on the formula

(1− a)(1 + a+ . . .+ an) = 1− an+1.

When |a| < 1, the right-hand side converges to 1, which implies sn → 1
1−a ,

n→∞, for the sequence

sn = 1 + a+ . . .+ an

of partial sums, as desired.

7.2. nth term test. The nth term test can be convenient when proving
divergence.

Theorem 7.3 (nth term test). If the series
∑
an is convergent, the nth

term an must converge to 0.

For a proof, write the nth term as the difference of partial sums

an = sn − sn−1

and use the convergence of sn and sn−1 to the same limit as n→∞.

Example 7.4. The geometric series
∑

n≥0 a
n is divergent when |a| ≥ 1.

Indeed, otherwise the nth term test would imply |an| = |a|n → 0, n→∞,
which is not the case since |a|n ≥ 1.

7.3. Cauchy’s criterion for series. The following is a direct conse-
quence of Cauchy’s criterion for sequences applied to the sequence of
partial sums:

Theorem 7.5. A series
∑

n an is convergent if and only if for every
ε > 0 there exists N such that

N ≤ m < n =⇒ |am+1 + . . .+ an| < ε.
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7.4. Comparison test. Comparison test is an important method of re-
ducing the question of convergence of complex series to that of their
real-valued majorant series:

Theorem 7.6. Let
∑

n zn and
∑

n xn be respectively complex and real
series satisfying the majorant condition

|zn| ≤ xn.

Then if
∑
xn is convergent, so is

∑
zn.

Proof. The proof is based on the estimate

|zm+1 + . . .+ zn| ≤ |zm+1|+ . . .+ |zn| ≤ xm+1 + . . .+ xn,

and Theorem 7.5. �

7.5. Absolute convergence.

Definition 7.7. A series
∑
zn converges absolutely if the series of abso-

lute values of its terms
∑
|zn| converges.

Lemma 7.8. An absolutely convergent series is convergent.

This follows immediately from the comparison test with the majorant
series

∑
|zn|.

7.6. Ratio test.

Theorem 7.9. Consider a series
∑

n zn such that for n sufficiently large
zn 6= 0 and there exists a real number q satisfying

(7.2)
∣∣∣zn+1

zn

∣∣∣ ≤ q < 1.

Then the series
∑

n zn converges absolutely. If
∣∣ zn+1

zn

∣∣ ≥ 1 it diverges.

Proof. If
∣∣ zn+1

zn

∣∣ ≥ 1, then for all n ≥ N |zn| ≥ |zN | > 0, violating the
nth term test, hence the series diverges. The convergence part is based
on comparison with geometric series. If (7.2) holds for all n ≥ N , then

(7.3) |zN+p| ≤ |zN |qp, p ≥ 1.

Since q < 1, the geometric series
∑

p |zN |qp converges and the conclu-
sion follows from the comparison test. �
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7.7. Root test.

Theorem 7.10. Consider a series
∑

n zn such that for every n suffi-
ciently large and some real number q,

(7.4) n
√
|zn| ≤ q < 1,

then the series converges absolutely. If n
√
|zn| ≥ 1 for all n sufficiently

large, it diverges.

Proof. (7.4) is equivalent to |zn| ≤ qn and the convergence of
∑

n q
n

implies the absolute convergence of
∑

n zn by comparison test. On the

other hand, the estimate n
√
|zn| ≥ 1 contradicts the nth term test zn → 0,

n→∞, hence the series diverges. �

8. Limits and continuity of functions of a complex variable

8.1. Limit points of subsets. Limits of functions can be considered
for functions defined on subsets S ⊂ C at their limit points.

Definition 8.1. A point a ∈ C is a limit point of S if every punctured
disk ∆ε(a)\{a} contains a point of S (which implies that every punctured
disk contains infinitely many points of S). Note that a limit point of S
does not need to belong to S.

Example 8.2. 0 is the only limit point of the set { 1
n

: n ∈ Z}.

8.2. Limits of functions.

Definition 8.3. If a is a limit point of S, then L is the limit of a function
f : S → C, written as

L = lim
z→a

f(z)

if and only if for every ε > 0, there exists δ > 0 such that

|z − a| < δ, z 6= a, z ∈ S =⇒ |f(z)− L| < ε.

If a is a limit point of S, the set on the left-hand side

{z : |z − a| < δ, z 6= a, z ∈ S} = (∆δ(a) \ {a}) ∩ S
is always nonempty.

The following is an important example illustrating the depence on the
domain of the function:

Example 8.4. Recall that Argz is the principal argument of z 6= 0 defined
by the condition −π < Argz ≤ π. Consider the upper and lower half-
planes

S+ := {z ∈ C : Im z > 0}, S− := {z ∈ C : Im z < 0},
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and functions

f : S+ → C, f(z) = Argz,

and

g : S− → C, g(z) = Argz.

Then

lim
z→1

f(z) = lim
z→1

g(z) = 0,

while

lim
z→−1

f(z) = π, lim
z→−1

g(z) = −π.

Also note that the value Arg(−1) = π does not matter for the limits of
f and g since −1 /∈ S−, −1 /∈ S+.

Similar to sequences, we have analogous algebraic properties of limits
of functions:

Lemma 8.5. Let f, g : S → C be functions defined over subset S ⊂ C
with limit point a. Suppose there exist limits

L = lim
z→a

f(z), M = lim
z→a

g(z).

Then

(L+M) = lim
z→a

(f(z)+g(z)), (L−M) = lim
z→a

(f(z)−g(z)), LM = lim
z→a

f(z)g(z).

If in addition M 6= 0 and g(z) 6= 0 for all z ∈ S, then

L

M
= lim

z→a

f(z)

g(z)
.

8.3. Continuous functions.

Definition 8.6. A function f : S → C is continuous at z0 ∈ S if for
every ε > 0 there exists δ > 0 such that

z ∈ S, |z − z0| < δ =⇒ |f(z)− f(z0)| < ε,

or equivalently,

f(S ∩∆δ(z0)) ⊂ ∆ε(f(z0)).

The function f is continuous on S whenever it is continuous at every
z0 ∈ S.

As a direct consequence of the defintions, we obtain:

Lemma 8.7. A function f : S → C is continuous on S if and only if
limz→z0 f(z) = f(z0) for every limit point z0 of S.
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Lemma 8.8. Let f, g : S → C be functions defined over subset S ⊂ C
that are continuous at some z0 ∈ S. Then f + g, f − g, fg are also
continuous at z0. If in addition g(z) 6= 0 for all z ∈ S, then the ratio f/g
is also continuous at z0.

Lemma 8.9 (Composition of continuous functions). Let S, T ⊂ C be
subsets and f : S → C, g : T → C be functions such that f(S) ⊂ T .
Suppose that f is continuous at z0 ∈ S and g is continuous at w0 = f(z0).
Then the composition function

g ◦ f : S → C, (g ◦ f)(z) := g(f(z))

is continuous at z0.

Proof. Let ε > 0 be given. Since g is continuous at w0 = f(z0), there
exists η > 0 such that

w ∈ T, |w − w0| < η =⇒ |g(w)− g(w0)| < ε.

Since f is continuous at z0, there exists δ > 0 such that

z ∈ S, |z − z0| < δ =⇒ |f(z)− f(z0)| < η.

Combining above implications, we obtain

z ∈ S, |z − z0| < δ =⇒ |g(f(z))− g(f(z0))| < ε

as desired. �

8.4. Examples of continuous functions.

Example 8.10. The constant function f(z) = c and the identity function
f(z) = z are continuous by a direct verification. Taking their sums and
products, it follows from Lemma 8.8 that a polynomial function p(z) =
anz

n+ . . .+a0 is continuous on C. Taking ratios, it follows that a rational

function p(z)
q(z)

is continuous on its domain {z : q(z) 6= 0}.

Example 8.11. The exponential function f(z) = ez is continuous on C.
Indeed, the real and imaginary parts Re z, Im z are continuous functions
of z since

|z − z0| < ε =⇒ |Re z − Re z0|, |Im z − Im z0| < ε.

From real analysis, we know that ex, sinx, cosx are continuous, hence
also their compositions with Re z and Im z,

eRe z, cos(Im z), sin(Im z)

are continuous, and hence Lemma 8.8 implies that

ez = eRe z(cos(Im z) + i sin(Im z))
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is continuous.

Example 8.12. The modulus function f(z) = |z| is continuous. Indeed,
using triangle inequalities

|z| ≤ |z0|+ |z − z0| =⇒ |z| − |z0| ≤ |z − z0|,

|z0| ≤ |z|+ |z0 − z| =⇒ |z0| − |z| ≤ |z − z0|
and hence

|f(z)− f(z0)| = ||z| − |z0|| ≤ |z − z0|.
Then |z − z0 < ε =⇒ |f(z)− f(z0)| < ε proves the continuity of f .

Example 8.13. The principal argument −π < Argz ≤ π of z 6= 0 is con-
tinuous at every z ∈ C\(−∞, 0] and is discontinuous (i.e. not continuous)
at every z ∈ (−∞, 0).

z = r(cos θ + i sin θ)

r

θ = Argz

Indeed, Argz away from (−∞, 0] can be computed as

Argz =


cos−1 Re z

|z| for Im z > 0

sin−1 Im z
|z| for Re z > 0

− cos−1 Re z
|z| for Im z < 0

,

where each function is continuous as composition of continuous functions.
On the other hand, Argz = π for z ∈ (−∞, 0), while the restriction

Argz|Im z<0 has limit −π at each z ∈ (−∞, 0), implying that Argz is not
continuous at z ∈ (−∞, 0).

Thus, to obtain a continuous function, we need to restrict Argz to
C \ (−∞, 0], i.e. on the complex plane with the negative real axis cut
out:
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8.5. Branches of multi-valued function. In the previous example we
constructed a so-called branch of the multi-valued argument arg z:

Definition 8.14. A branch of a complex multi-valued function F (z) in
on a subset S is any continuous function f : S → C with f(z) ∈ F (z) for
all z ∈ S.

Example 8.15. Recall that the principal logarithm is given by

Logz = ln |z|+ iArgz.

Since Argz is continuous on S := C \ (−∞, 0], Logz is also continuous on
S and hence is a branch of log z.

Furthermore, since arg z is defined up to a multiple of 2π,

fk(z) = Logz + 2πik ∈ ln |z|+ i arg z = log z

is a branch of log z for every k ∈ Z.

Example 8.16. With S := C \ (−∞, 0] as before, we can define branches
on S of the nth root n

√
z by

fn,k(z) := n
√
|z|e

i
n

(Argz+2πk), z ∈ S,
for each fixed n and k = 0, 1, . . . , n − 1. Here fn,k is the kth branch of
the multi-valued nth root.

8.6. Open set criterion for continuity. Recall that for every function
f : X → Y and subset U ⊂ Y , its preimage is defined by

f−1(U) = {x ∈ X : f(x) ∈ U} ⊂ X.

Theorem 8.17 (open set criterion for continuity). A function f : S → C
with S ⊂ C is continuous if and only if for every open subset U ⊂ C, its
preimage f−1(U) is (relatively) open in S.

Note the important distinction between being open (in C) and open in
S. In general, the preimage f−1(U) may not be open in C. For example
take S := R, f(z) = z, U = C, then f−1(U) = R is open in S but not in
C.

Proof. =⇒ : Assume f is continuous, let U ⊂ C be open and fix z0 ∈
f−1(U). By definition of preimage, f(z0) ∈ U and since U is open, there
exists a disk ∆ε(f(z0)) ⊂ U . But then the continuity of f implies

∃δ > 0 f(S ∩∆δ(z0)) ⊂ ∆ε(f(z0)) ⊂ U,

and hence S ∩∆δ(z0) ⊂ f−1(U) proving f−1(U) is open in S since z0 ∈
f−1(U) is arbitrary.
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⇐=: Suppose “U is open” implies “f−1(U) is open in S” for all U , and
fix z0 ∈ S, ε > 0. Since every disk U := ∆ε(f(z0)) is open, its preimage

f−1(U) = f−1(∆ε(f(z0))) 3 z0

is open in S by our assumption, hence there exists a disk ∆δ(z0) with
∆δ(z0) ∩ S ⊂ f−1(U) which implies

f(S ∩∆δ(z0)) ⊂ ∆ε(f(z0)),

hence f is continuous at z0 since ε > 0 was arbitrary. Since z0 ∈ S is
arbitrary, f is continuous. �

8.7. Continuity and connectedness.

Theorem 8.18 (continuous images of connected sets are connected). If
f : S → C is a continuous function and S is connected, then the image
f(S) is also connected.

Proof. Suppose by contradiction, f(X) is contained in a union of disjoint
open sets A,B with

(8.1) A ∩ f(X) 6= ∅, B ∩ f(X) 6= ∅.
Then the continuity of f implies that the sets

U := f−1(A), V := f−1(B),

are open in S. In addition, (8.1) implies U, V 6= ∅, and A∩B = ∅ implies
U ∩ V = ∅. Hence S is covered by the disjoint nonempty open subsets
U, V , which contradicts its connectedness. Hence f(X) is connected. �

We now provide an application of Theorem 8.18 for which we introduce
a stronger notion of path-connectedness that is often easier to use to
establish connectedness.

Definition 8.19. Let S ⊂ C be a subset.

(1) A path in S is any continuous map γ : [a1, a2] → S, where
[a1, a2] ⊂ R.

(2) S is called path-connected if for any two points s1, s2 ∈ S there
exists a path γ : [a1, a2]→ S with γ(a1) = s1, γ(a2) = s2.

Theorem 8.20. Any path-connected subset of C is connected.

Proof. Let S ⊂ C be path-connected and assume by contradiction it is
not connected. Then S is contained in a union of disjoint open sets A1, A2

with
A1 ∩ S 6= ∅, A2 ∩ S 6= ∅.
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Fix some s1 ∈ A1∩S, s2 ∈ A2∩S. Since S is path-connected, there exists
a path γ : [a1, a2] → S with γ(a1) = s1, γ(a2) = s2. But then the image
γ([a1, a2]) is contained in the union of disjoint open sets sets A1, A2 with

A1 ∩ γ([a1, a2]) 6= ∅, A2 ∩ γ([a1, a2]) 6= ∅,
which implies that γ([a1, a2]) is not connected. On the other hand,
γ([a1, a2]) is the image of the connected interval [a1, a2] under the con-
tinuous map γ, hence is connected by Theorem 8.18. Thus we reached a
contradiction proving that S is connected.

�

8.8. Applications of connectedness to branches of multi-valued
functions. We here illustrate how connectedness can be used to com-
pute all branches of arg z. The main argument is given by the following
uniqueness lemma:

Lemma 8.21. Let S ⊂ C\{0} be connected and g1, g2 : S → C branches
of arg z. Then

g2 = g1 + const.

Proof. Let g := g2 − g1. Then for every z ∈ S,

g1(z), g2(z) ∈ arg z

implies

(8.2) g(z) = g2(z)− g1(z) = 2πk, k ∈ Z,
where a priori k may depend on z. We want to use the connectedness of
S to prove that k is in fact independent of z ∈ S. Fix z0 ∈ S and k0 ∈ Z
with g(z0) = 2πk0 and consider the set

U := {z ∈ S : g(z) = 2πk0}.
Since g1, g2 are continuous on S by the definition of a branch, so is g(z).
Then the continuity of g implies that, for any z1 ∈ S and ε = 2π, there
exists δ > 0 such that

(8.3) z ∈ S, |z − z1| < δ =⇒ |g(z)− g(z1)| < 2π =⇒ g(z) = g(z1),

where we used (8.2), since |2πk| < 2π for k ∈ Z implies k = 0. In
particular, for z1 ∈ U , it follows that g = 2πk0 on S ∩∆δ(z1), i.e.

S ∩∆δ(z1) ⊂ U,

which proves that U is open in S. Similarly, for z1 /∈ U , it follows that
g 6= 2πk0 on S ∩∆δ(z1), i.e.

S ∩∆δ(z1) ⊂ S \ U,
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which proves that S \ U is also open in S. Hence we have represent
S = U ∪ (S \ U) as disjoint union of open subsets. By continuity of
S, these sets cannot be both nonempty. Since U 6= ∅, it follows that
S \ U = ∅, hence U = S proving that g(z) = 2πk0 for all z ∈ S as
desired. �

Corollary 8.22. All branches of arg z on S = C \ (−∞, 0] are of the
form

(8.4) fk(z) = Arg(z) + 2πk, k ∈ Z.

Proof. It is easy to see that S is path-connected. In fact, for every point
z1 ∈ S, the path

γ(t) := (1− t)z1 + 1, t ∈ [0, 1], =⇒ γ(0) = z1, γ(1) = 1

and γ is a path in S:

z1

z2

1

Then combining line segments for any two points z1, z2, it follows that S
is path-connected. Hence S is connected by Theorem 8.20.

Now, let f : S → C be any branch of Argz and fix z0 ∈ S. Then
f(z0) ∈ argz0 implying

(8.5) f(z0) = Argz0 + 2πk0 = fk0(z0)

for some k0 ∈ Z. Then f(z) − fk0(z) = const by Lemma 8.21 and (8.5)
implies f(z)−fk0(z) = 0, i.e. the branch f is of the form (8.4) as claimed.

�

8.9. Continuity and compactness.

Theorem 8.23 (continuous images of compact spaces are compact). If
f : S → C is a continuous function and S is compact, then the image
f(S) is also compact.

Proof. To show that f(S) ⊂ C is compact, consider an open cover f(S) ⊂⋃
α Uα. Then each preimage

f−1(Uα) = {z : f(z) ∈ Uα)} ⊂ C
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is open by the open set criterion of continuity and

f(S) ⊂
⋃
α Uα =⇒ S ⊂

⋃
α f
−1(Uα),

i.e. the preimages f−1(Uα) form an open cover of S. We now can use the
compactness of S to conclude the existence of a finite subcover

S ⊂ f−1(Uα1) ∪ · · · ∪ f−1(Uαn) =⇒ f(S) ⊂ Uα1 ∪ · · · ∪ Uαn ,
proving the existence of a finite subcover for f(S) as claimed. �

8.10. Uniform continuity. Uniform continuity is a stronger condition
that continuity that is sometimes needed in applications:

Definition 8.24. A function f : S → C is called uniformly continuous if
for every ε > there exists δ > 0 such that

(8.6) z, w ∈ S, |z − w| < δ =⇒ |f(z)− f(w)| < ε.

It is easy to see from definitions that any uniformly continuous function
is continuous (i.e. continuous at every point). The key difference is that
continuity of f is defined at a fixed point z, hence δ > 0 in (8.6) may
depend on z. However, on compact sets both notions turn out to be
equivalent:

Theorem 8.25 (Uniform continuity of continuous functions on com-
pacta). Let S ⊂ C be compact and f : S → C be continuous. Then f is
uniformly continuous.

Proof. By definition of continuity, for every z ∈ S and ε > 0, there exists
δ = δ(z) > 0 such that

(8.7) w ∈ S, |z − w| < δ(z) =⇒ |f(z)− f(w)| < ε

2
.

Then
S ⊂

⋃
z∈S

∆ δ(z)
2

(z)

is an open cover, which, by compactness, has a finite subcover

S ⊂ ∆ δ(z1)
2

(z1) ∪ . . . ∪∆ δ(zn)
2

(zn).

Hence every z ∈ S is covered by some ∆ δ(zj)

2

(zj). Taking δ := min1≤j≤n
δ(z1)

2

we conclude for w ∈ S:

|z − w| < δ ≤ δ(zj)

2
(zj) =⇒ |w − zj| ≤ |w − z|+ |z − zj| < δ(zj).

Now using (8.7) for zj yields

|f(zj)− f(z)| < ε

2
, |f(zj)− f(w)| < ε

2
=⇒ |f(z)− f(w)| < ε



32 D. ZAITSEV

by the triangle inequality, as desired. �

9. Function sequences and series

9.1. Terminology. A function sequence is simply a sequences of func-
tions

fn : S → C,
where the domain of definition S is the same for all functions. Similarly,
a function series is a series

∞∑
n=1

fn(z)

whose terms are functions defined on the same domain.
If the terms of a series are initially not defined on the same domain,

the intersection of their domains is to be considered as the maximum
subset where all terms are defined:

Example 9.1. The series ∑
n≥1

1

z − n

is defined for z ∈ S := C \ N, which is the intersection of all domains of
its terms.

9.2. Pointwise convergence of function sequences. There are two
main notions of convergence for function sequences and series - pointwise
and uniform.

Definition 9.2. A function sequence fn : S → C converges pointwise to
a function f : S → C (with the same domain) as n → ∞ if for each
z ∈ S, their values fn(z) converge to f(z):

∀z ∈ S fn(z)→ f(z), n→∞.

Example 9.3. The function sequence

fn(z) = zn, z ∈ S := ∆1(0) ∪ {1},
converges pointwise to the function

f(z) =

{
0 z ∈ ∆1(0)

1 z = 1.

On the other hand, since (−1)n does not have a limit, the same sequence
is not pointwise convergent on S ′ = ∆1(0) ∪ {−1} (where z = −1 is the
only point where the sequence diverges).
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In the above example all functions fn are continuous on S, whereas
their pointwise limit f(z) is not continuous at z = 1. This phenomenon
motivates the stronger notion of uniform convergence, which preserves
continuity.

9.3. Uniform convergence of function sequences.

Definition 9.4. A function sequence fn : S → C converges uniformly to
a function f : S → C (with the same domain) as n → ∞ if for every
ε > 0 there exists N such that

(9.1) ∀z ∈ S, n ≥ N =⇒ |fn(z)− f(z)| < ε.

The key difference between uniform and pointwise convergence is that
the number N in (9.1) is chosen independently of z, whereas for a point-
wise convergence the choice of N is made for a fixed z, hence may depend
on z.

Example 9.5. We have seen that the sequence of powers fn(z) := zn

converges pointwise to 0 on the unit disk S = ∆1(0). In this case (9.1)
becomes

∀z |z| < 1, n ≥ N =⇒ |zn| < ε.

In particular, for n = N , we would have

∀z |z| < 1 =⇒ |z| < ε1/N ,

which cannot hold if ε < 1 =⇒ ε1/N < 1. This shows that there is no
N such that (9.1) holds, hence the convergence is not uniform.

An equivalent way of defining uniform convergence is given by the
following lemma following directly from the definition:

Lemma 9.6. A function sequence fn : S → C converges uniformly to a
function f : S → C as n→∞ if and only if

sup
z∈S
|fn(z)− f(z)| → 0, n→∞.

Example 9.7. In the above example with fn(z) = zn, f(z) = 0, z ∈ S =
∆1(0), we compute

sup
z∈S
|fn(z)− f(z)| = sup

|z|<1

|zn| = 1 6= 0, n→∞.
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9.4. Convergence of function series. Similarly to number series, both
pointwise and uniform convergence of function series are reduced to re-
spective convergence for the sequence of their partial sums:

Definition 9.8. A function series
∑∞

n=1 gn(z) converges pointwise (resp.
uniformly) to a function s(z) (with the same domain) if the sequence of
corresponding partial sums

sn(z) :=
n∑
n=1

gk(z)

converges pointwise (resp. uniformly) to s(z).

9.5. Weierstrass M-test. A central result providing uniform conver-
gence of function series is theWeierstrass M -test (“M” is for ”majorant”):

Theorem 9.9. Let
∑

n fn(z), z ∈ S, and
∑

n xn be respectively complex
function series and real number series satisfying the (uniform) majorant
condition

∀z ∈ S |fn(z)| ≤ xn.

If
∑

n xn converges, then
∑

n fn(z) converges uniformly.

Proof. By the Comparison Test for number series, fixing z ∈ S, conclude
that

∑
n fn(z) converges pointwise to some limit function s(z), i.e.

(9.2) ∀z ∈ S
n∑
k=1

fk(z)→ s(z), n→∞.

Fixing ε > 0 and using the convergence of
∑

n xn, we can find N with∑
n≥N

xn <
ε

2
.

Then for m ≥ N , z ∈ S,∣∣∣∣∣
m+n∑
k=1

fk(z)−
m∑
k=1

fk(z)

∣∣∣∣∣ =

∣∣∣∣∣
m+n∑
k=m+1

fk(z)

∣∣∣∣∣ ≤
m+n∑
k=m+1

xk ≤
+∞∑
k=N

xk <
ε

2
,

and taking the limit as n→∞ for each fixed z ∈ S, we obtain∣∣∣∣∣s(z)−
m∑
k=1

fk(z)

∣∣∣∣∣ ≤ ε

2
< ε, m ≥ N,

proving the desired uniform convergence, since N is independent of z. �
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Example 9.10. The series ∑
n≥1

zn

n2

converges uniformly in S = {z : |z| ≤ 1}. Indeed, we have the uniform
majorant estimate

|z| ≤ 1 =⇒
∣∣∣∣znn2

∣∣∣∣ ≤ 1

n2
,
∑
n

1

n2
< +∞,

and the uniform convergence on S follows from the Weierstrass M-test.

9.6. Continuity of uniform limits.

Theorem 9.11. Let fn : S → C be a sequence of functions converging
uniformly to a function f : S → C. If each fn is continuous on S, so is
the uniform limit f .

Proof. We need to show for a fixed z0 ∈ S that f is continuous at z0.
Fixing ε > 0 and using the uniform convergence, we conclude there exists
N such that

(9.3) z ∈ S, n ≥ N =⇒ |fn(z)− f(z)| < ε

3
.

By the continuity of fN at z0, there exists δ > 0 with

z ∈ S, |z − z0| < δ =⇒ |fN(z)− fN(z0)| < ε

3
.

Then using (9.3) for z and z = z0 and the triangle inequality,

|f(z)− f(z0)| ≤ |f(z)− fN(z)|+ |fN(z)− fN(z0)|+ |f(z0)− fN(z0)| < ε,

which holds for all z ∈ S with |z − z0| < δ, proving the continuity of f
at z0 as desired. �

10. Holomorphic functions

Of fundamental importance is the notion of differentiability for func-
tions f(z) with both arguments and values in C. Here there are two basic
notions of differentiability: complex and real differentiability.

10.1. Complex-differentiable and holomorphic functions.

Definition 10.1 (complex differentiability). A function f : U → C,
where U is open, is called complex-differentiable or C-differentiable at
a point z0 ∈ U if there exists the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

∈ C.

The limit f ′(z0) is called the (complex) derivative of f at z0.
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Note that since U is open, every point z0 is automatically a limit point
of U , hence the limit makes sense.

Definition 10.2 (holomorphic functions). A function f is holomorphic
on an open set U ⊂ C if it is C-differentiable at every point of U .

Example 10.3. Let f(z) = c be a constant function for some c ∈ C. Then

lim
z→z0

f(z)− f(z0)

z − z0

= lim
z→z0

c− c
z − z0

= 0

for all z0 ∈ C, hence f is C-differentiable at every point with the deriva-
tive f ′(z0) = 0, and therefore is holomorphic on C.

Example 10.4. Let f(z) = z be the identity function. Then

lim
z→z0

f(z)− f(z0)

z − z0

= lim
z→z0

z − z0

z − z0

= 1

for all z0 ∈ C, hence f is C-differentiable at every point with the deriva-
tive f ′(z0) = 1, and therefore is holomorphic on C.

Example 10.5. Let f(z) = z be the conjugation. Then f is not C-
differentiable at any point z0 ∈ C. To show this, write

z − z0 = reiθ

in the polar form, and compute

f(z)− f(z0)

z − z0

=
z − z0

z − z0

=
re−iθ

reiθ
= e−2iθ,

which has no limit as z → z0. Indeed, suppose by contradiction that limit
is some L ∈ C. Then for every ε > 0 there exists δ > 0 with

|z − z0| = r < δ =⇒ |e−2iθ − L| < ε.

Choosing r = δ/2, θ = 0, we obtain

|1− L| < ε,

and similarly for r = δ/2, θ = π/2, we obtain

| − 1− L| < ε,

which together with triangle inequality yields

2 = |(1− L)− (−1− L)| ≤ |1− L|+ | − 1− L| < 2ε.

The latter is clearly impossible for ε < 1, a contradiction.
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10.2. Continuity of complex-differentiable functions.

Lemma 10.6. Let f : U → C be C-differentiable at z0. Then f is con-
tinuous at z0.

Proof. Direct consequence of the computation:

lim
z→z0

(f(z)− f(z0)) = lim
z→z0

f(z)− f(z0)

z − z0

· lim
z→z0

(z − z0) = f ′(z0) · 0 = 0.

�

10.3. Real differentiability. We have identified complex numbers z =
x + iy with points (x, y) in the real plane R2. This identification turns
every function f : U ⊂ C into R2-valued function of two real variables.
Then Analysis of Several Real Variables provides us with different notion
of differentiability that we call real differentiability:

Definition 10.7 (real differentiability: standard in Real Analysis). A
function f : U ⊂ Rm → Rn, where U is open, is called real-differentiable
or R-differentiable at a point x0 = (x0

1, . . . , x
0
m) ∈ U if there exists a

real-linear map L : Rm → Rn with

(10.1) lim
x→x0

‖f(x)− f(x0)− L(x− x0)‖
‖x− x0‖

= 0, ‖x‖ =
√
x2

1 + . . .+ x2
m.

Here “real-linear” means linear over real scalars, i.e.

L(tx+ sy) = tL(x) + sL(y), x, y ∈ Rm, t, s ∈ R.
The real-linear map L(x − x0) is then uniquely determined from (10.1)
and is called the differential of f at x0 satisfying the well-known formula

(10.2) L(x− x0) = df(x0)(x− x0) =
∑ ∂f

∂xj
(x0)(xj − x0

j),

where ∂f
∂xj

is the partial derivative of f in the variable xj:

∂f

∂xj
(x0) := lim

t→0

f(x0
1, . . . , x

0
j−1, x

0
j + t, x0

j+1, . . . , x
0
m)− f(x0)

t
.

Lemma 10.8 (C-differentiability =⇒ R-differentiability). Let f : U ⊂
C→ C be complex-differentiable at z0. Then it is also real-differentiable
when viewed as map between points of the real plane R2.

Proof. By definition, if f is complex-differentiable at z0, there exists

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

⇐⇒ lim
z→z0

f(z)− f(z0)− f ′(z0)(z − z0)

z − z0

= 0
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and we conclude that f is real-differentiable whose differential L = df(z0)
is given by the complex multiplication with derivative f ′(z0):

L =: R2 ∼= C→ R2 ∼= C, w 7→ f ′(z0)w.

�

Not all R-differentiable functions are C-differentiable! Here is a simple
counter-example:

Example 10.9. We have seen that the conjugate f(z) = z is not C-
differentiable at any z0.

On the other hand, f is real-linear:

tz + sw = tz + sw, z, w ∈ C, t, s ∈ R,

hence its real differentiability at every point follows from the definition
with L = f .

10.4. Decomposition of the differential. We write ∆x = x − x0,
∆y = y − y0 for the increments of each variable and ∆z = z − z0,
where z = x + iy, z0 = x0 + iy0. As conjugation is more convenient for
computations (being a field automorphism), we perform the substitution

∆x =
∆z + ∆z

2
, ∆y =

∆z −∆z

2i
,

where ∆z = ∆x+ i∆y, ∆z = ∆x− i∆y.
Now compute the differential L = df of f by the formula (10.2) (drop-

ping the reference point z0 for brevity):

df(∆x,∆y) =
∂f

∂x
∆x+

∂f

∂y
∆y =

∂f

∂x

∆z + ∆z

2
+
∂f

∂y

∆z −∆z

2i

=
1

2

(
∂f

∂x
+

1

i

∂f

∂y

)
∆z +

1

2

(
∂f

∂x
− 1

i

∂f

∂y

)
∆z =

∂f

∂z
∆z +

∂f

∂z
∆z,

where we group terms with ∆z, ∆z, and introduce the formal partial
derivatives:

(10.3)
∂f

∂z
:=

1

2

(
∂f

∂x
+

1

i

∂f

∂y

)
,

∂f

∂z
:=

1

2

(
∂f

∂x
− 1

i

∂f

∂y

)
.

Using (10.3) for L = df , we can rewrite (10.1) as

(10.4) lim
∆z→0

f(z0 + ∆z)− f(z0)− (∂f
∂z

∆z + ∂f
∂z

∆z)

∆z
= 0.



39

10.5. Comparison of real and complex differentiability.

Theorem 10.10. Let f be real-differentiable at z0. Then the following
are equivalent:

(1) f is complex-differentiable at z0;
(2) ∂f

∂z
(z0) = 0.

If (1) (and hence (2)) holds, then f ′(z0) = ∂f
∂z

(z0).

Proof. (2) =⇒ (1): Assuming ∂f
∂z

(z0) = 0, we have dfz0(∆x,∆y) =
∂f
∂z

(z0)∆z. Then (10.4) becomes

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
− ∂f

∂z
(z0) = 0

proving C-differentiability (1) with f ′(z0) = ∂f
∂z

(z0).
(1) =⇒ (2): Rewriting (10.4) we have

lim
∆z→0

(
f(z0 + ∆z)− f(z0)

∆z
− ∂f

∂z
(z0)− ∂f

∂z
(z0)

∆z

∆z

)
= 0.

By (1) the 1st term has a limit, hence the 3rd term must also have a

limit. However, we have seen that ∆z
∆z

has no limit as ∆z → 0. Then

the only way the 3rd term has a limit is when ∂f
∂z

(z0) = 0, i.e. when (2)
holds. �

10.6. Cauchy-Riemann equations. Splitting f = u+ iv into real and
imaginary parts, compute

2
∂f

∂z
=
∂(u+ iv)

∂x
− 1

i

∂(u+ iv)

∂y
=

(
∂u

∂x
− ∂v

∂y

)
+ i

(
∂v

∂x
+
∂u

∂y

)
,

hence, identifying real and imaginary parts, we obtain

∂f

∂z
= 0 ⇐⇒

{
ux = vy
uy = −vx

,

where on the right-hand side we obtain the Cauchy-Riemann equations.
With that equivalence, Theorem 10.10 can be rewritten as

Corollary 10.11. Let f be real-differentiable at z0. Then the following
are equivalent:

(1) f is complex-differentiable at z0;
(2) the partial derivatives of f = u + iv at z0 satisfy the Cauchy-

Riemann equations ux = vy, uy = −vx.

If (1) (and hence (2)) holds, then f ′(z0) = fx(z0) = ux(z0) + ivx(z0).
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The last claim follows from the computation

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
= lim

∆x→0

f(z0 + ∆x)− f(z0)

∆x
= fx(z0).

The following important result from Real Analysis provides a conve-
nient way to show R-differentiability:

Theorem 10.12 (Sufficient condition of R-differentiability from Real
Analysis). Let U ⊂ Rm is open and f : U → Rm a function such that all
partial derivatives

∂d

∂xj
, j = 1, . . . ,m,

exist and are continuous in U . The f is R-differentiable at every point
of U .

Example 10.13. The complex exponential function f(z) = ez was defined
as

f(z) = ex(cos y + i sin y),

so that we have for the real and imaginary parts

u(x, y) = ex cos y, v(x, y) = ex sin y,

and we can directly verify the Cauchy-Riemann equations at every point:

(10.5) ux = ex cos y = vy, uy = −ex sin y = −vx.
Furthermore, both partial derivatives fx, fy exist and are continuous on
R2 in view of (10.5). Hence f(z) = ez is real-differentiable at every
point of C by Theorem 10.12. Then by Corollary 10.11, f(z) = ez is
C-differentiable at every point and therefore is holomorphic on C.

Furthermore, by Corollary 10.11,

(ez)′ =
∂

∂x
ex(cos y + i sin y) = ex(cos y + i sin y) = ez.

10.7. Algebraic properties of C-differentiability. Algebraic prop-
erties of C-differentiability are analogous to those of differentiability of
functions of one real variable with the same proofs:

Theorem 10.14. Let U ⊂ C be open and f, g : U → C be C-differentiable
at z0 ∈ U . Then

(1) f + g is C-differentiable at z0 with

(f + g)′(z0) = f ′(z0) + g′(z0);

(2) fg is C-differentiable at z0 with

(fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0);
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(3) if g(z) 6= 0 for z ∈ U , the ratio f
g

is C-differentiable at z0 with(
f

g

)′
(z0) =

f ′(z0)g(z0)− f(z0)g′(z0)

(g(z0))2
.

Example 10.15. We have seen that the constant and the identity functions
are holomorphic on C. Taking products and sums, we conclude that any
polynomial function P (z) = anz

n + . . . + a0 is C-differentiable at every
z0 ∈ C, hence is holomorphic on C. Taking ratios of polynomials, we

conclude that any rational function f(z) = P (z)
Q(z)

is holomorphic on the

open set U := {z ∈ C : Q(z) 6= 0}.

10.8. Compositions and inverses of C-differentiable functions.

Theorem 10.16. Let U, V ⊂ C be open and

f : U → C, g : V → C, f(U) ⊂ V,

so that the composition g ◦ f : U → C is defined. If f and g are C-
differentiable at z0 and w0 := f(z0) respectively, then h is C-differentiable
at z0 with derivative given by the chain rule

(g ◦ f)′(z0) = g′(w0)f ′(z0).

Proof. We have

(10.6)
(g ◦ f)(z)− (g ◦ f)(z0)

z − z0

= G(f(z))
f(z)− f(z0)

z − z0

, z 6= z0,

where

G(w) :=

{
g(w)−g(w0)
w−w0

w 6= w0

g′(w0) w = w0

.

Since g is C-differentiable at w0, G is continuous at w0 and hence G(f(z))
is continuous at z0 as composition of continuous functions and

lim
z→z0

G(f(z)) = g′(w0).

Since f is C-differentiable at z0, (10.6) yields

lim
z→z0

(g ◦ f)(z)− (g ◦ f)(z0)

z − z0

= g′(w0)f ′(z0)

as desired. �

Theorem 10.17. Let U, V ⊂ C be open subsets, f : U → C a function,
and f−1 : V → U a right inverse, i.e.

(10.7) f(f−1(w)) = w, w ∈ V.
Assume that
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(1) f−1 is continuous at w0 ∈ V .
(2) f is C-differentiable at z0 = f−1(w0) ∈ U ;
(3) f ′(z0) 6= 0;

Then f−1 is C-differentiable at w0 with derivative

(f−1)′(w0) =
1

f ′(z0)
=

1

f ′(f−1(w0))
.

Proof. For w 6= w0 ∈ V set z = f−1(w). Then f(z) = w, f(z0) = w0 by
(10.7) and

(10.8)
f−1(w)− f−1(w0)

w − w0

=
z − z0

f(z)− f(z0)
.

By (2) and (3), we have

(10.9) lim
z→z0

z − z0

f(z)− f(z0)
=

1

f ′(z0)
.

To show that the left-hand side of (10.8) converges to the same limit as
w → w0, we need to use (1). Indeed, (10.9) means for every ε > 0 there
exists η > 0 with

z 6= z0, |z − z0| < η =⇒
∣∣∣∣ z − z0

f(z)− f(z0)
− 1

f ′(z0)

∣∣∣∣ < ε.

Since f(f−1(w)) = f(z) = w, w 6= w0 implies z 6= z0. Since f−1 is
continuous at w0 and there exists δ > 0 with

w 6= w0, |w − w0| < δ =⇒ z 6= z0, |z − z0| < η,

and therefore

w 6= w0, |w − w0| < δ =⇒
∣∣∣∣f−1(w)− f−1(w0)

w − w0

− 1

f ′(z0)

∣∣∣∣ < ε

proving the desired conclusion. �

Example 10.18. Let V ⊂ C \ {0} be open and g : V → C a branch of the
logarithm log(w). Then

f(g(w)) = w,

holds for
f(z) = ez, z ∈ U = C,

i.e. g = f−1 is a right inverse in the sense that f ◦ f−1 = id. Then by
Theorem 10.17, the branch g = f−1 is C-differentiable at every w0 ∈ V
with

g′(w0) =
1

f ′(g(w0))
=

1

f(g(w0))
=

1

w0
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since f ′(z) = (ez)′ = ez = f(z) and f(g(w)) = w.
For example, the principal logarithm Logz is a branch over the open

set V := C \ (−∞, 0]. (Note that we defined Logz for all z 6= 0 but it
is continuous, hence a branch, only over V .) Then we have shown above
that Logz is holomorphic on V with

(Log)′(w) =
1

w
, w ∈ V.

11. Paths in complex plane

Definition 11.1. (1) A path in a subset S ⊂ C is a continuous map
γ : [a, b]→ S, where [a, b] ⊂ R is an interval with a < b.

(2) The point γ(a) is called the beginning point and γ(b) the end point
of γ.

(3) A path γ is called closed whenever it has the same beginning and
the end point, i.e. γ(a) = γ(b).

γ(t)
γ(a)

γ(b)

Note that we can write

γ(t) = α(t) + iβ(t), α(t) = Re γ(t), β(t) = Im g(t).

Lemma 11.2. A function γ(t) = α(t) + iβ(t), t ∈ [a, b], is continuous if
and only if both α(t) and β(t) are continuous.

Proof. If γ(t) is continuous, and since Rew and Imw are continuous in
w, their compositions α(t) and β(t) are continuous.

Vice versa, if α(t) and β(t) are continuous, then γ(t) is continuous as
a sum of products of continuous functions. �

11.1. Differentiability of paths.

Definition 11.3. (1) A path γ : [a, b] → C is differentiable at t0 ∈
[a, b] if there exists

lim
t→t0

γ(t)− γ(t0)

t− t0
=: γ′(t0) ∈ C,

which we call the derivative of γ at t0.
(2) A path γ : [a, b] → C is piecewise continuously differentiable of

piecewise C1 if there exists a partition

a = t0 < t1 < . . . < tn = b
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such that each restriction path

γj := γ|[tj−1,tj ] : [tj−1, tj]→ C

is differentiable at every t ∈ [tj−1, tj] and its derivative γ′j(t) is
continuous on [tj−1, tj].

Taking real and imaginary parts, we obtain:

Lemma 11.4. A path

γ(t) = α(t) + iβ(t)

is differentiable at t0 (resp. piecewise continuously differentiable) if and
only if both α(t) and β(t) are differentiable at t0 (resp. piecewise contin-
uously differentiable). If γ is differentiable at t0, its derivative is

γ′(t0) = α′(t0) + iβ′(t0).

If both α(t) and β(t) are piecewise continuously differentiable with
respective partiions a = t0 < . . . < tn = b and a = s0 < . . . < sm = b,
we can use the refined partition given by the set of all tj and sk to show
that γ(t) is piecewise continuously differentiable.

11.2. Affine and piecewise affine paths.

Example 11.5 (Affine path). For A,B ∈ C, let

γ(t) := At+B, t ∈ [a, b],

whose image γ([a, b]) is the line segment between γ(a) and γ(b):

γ(a)

γ(b)

Clearly γ is continuously differentiable as a sum of products of contin-
uously differentiable functions.

Example 11.6 (Piecewise affine path). More generally, consider a parti-
tion

a = t0 < t1 < . . . < tn = b

and for each j = 1, . . . , n an affine linear path

γj(t) = Ajt+Bj, t ∈ [tj−1, tj],

such that

γ1(t1) = γ2(t1), γ2(t2) = γ3(t2), . . . , γn−1(tn−1) = γn(tn−1).
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Then combining all γj, we define the piecewise affine path γ : [a, b]→ C
by

γ(t) := γj(t) for tj−1 ≤ t ≤ tj,

which is piecewise C1:

γ1(t1) = γ2(t1)

γ1(t0) = γ(a)

γ2(t2) = γ(b)

11.3. Integrals of C-valued functions. The Riemann integral of C-
valued functions ϕ : [a, b] → C is defined analogously to the Riemann
integral of R-valued functions as limit of integral sums

(11.1)

∫ b

a

ϕ(t)dt = lim
maxj(tj−tj−1)→0

∑
j

ϕ(sj)(tj − tj−1),

where a = t0 < . . . < tn = b is a partition and sj ∈ [tj−1, tj].
As for the derivative, separating real and imaginary parts we obtain:

Lemma 11.7. A function ϕ = α + iβ : [a, b] → C is integrable if and
only if both real and imaginary parts α, β are integrable. If ϕ = α + iβ
is integrable, ∫ b

a

ϕ(t)dt =

∫ b

a

α(t)dt+ i

∫ b

a

β(t)dt.

Taking absolute values in (11.1) and using the triangle inequality, we
obtain:

Lemma 11.8 (Basic estimate).∣∣∣∣∫ b

a

ϕ(t)dt

∣∣∣∣ ≤ sup
t∈[a,b]

|ϕ(t)|(b− a).

Again, separating al and imaginary parts, the Fundamental theorem
of calculus can be extended to C-valued functions:

Theorem 11.9 (Fundamental theorem of calculus). Let ϕ : [a, b] → C
be continuously differentiable. Then∫ b

a

ϕ′(t)dt = ϕ(b)− ϕ(a).
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11.4. Integral of a function along a path. If f : S → C is a con-
tinuous function and γ : [a, b] → S is a continuously differentiable path,
define the integral of f along γ by

(11.2)

∫
γ

f(z)dz :=

∫ b

a

f(γ(t))γ′(t)dt.

Since the composition f(γ(t)) and the derivative γ′(t) are continuous,
the integral in (11.2) always exists (as the Riemann integral).

More abstractly,
∫
γ
f(z)dz can be defined for more general γ and f as

the limit of the integral sums

(11.3)
∑
j

f(γ(sj))(γ(tj)− γ(tj−1)),

as maxj(tj − tj−1) → 0, where a = t0 < . . . < tn = b is a partition and
sj ∈ [tj−1, tj].

Lemma 11.10. Let f : S → C be a continuous function and γ : [a, b]→ S
a continuously differentiable path. Then the integral sum (11.3) converges
to (11.2) as maxj(tj − tj−1)→ 0.

Proof. By Theorem 11.9,

γ(tj)− γ(tj−1) =

∫ tj

tj−1

γ′(t)dt.

We need to estimate

∆ :=

∣∣∣∣∣∑
j

f(γ(sj))(γ(tj)− γ(tj−1))−
∫ b

a

f(γ(t))γ′(t)dt

∣∣∣∣∣
=

∣∣∣∣∣∑
j

f(γ(sj))(γ(tj)− γ(tj−1))−
∑
j

∫ tj

tj−1

f(γ(t))γ′(t)dt

∣∣∣∣∣
≤
∑
j

∣∣∣∣∣f(γ(sj))(γ(tj)− γ(tj−1))−
∫ tj

tj−1

f(γ(t))γ′(t)dt

∣∣∣∣∣
≤
∑
j

∣∣∣∣∣f(γ(sj))

∫ tj

tj−1

γ′(t)dt−
∫ tj

tj−1

f(γ(t))γ′(t)dt

∣∣∣∣∣
≤
∑
j

∣∣∣∣∣
∫ tj

tj−1

(
f(γ(sj))γ

′(t)− f(γ(t))γ′(t)
)
dt

∣∣∣∣∣
≤
∑
j

sup
t∈[tj−1,tj ]

|f(γ(sj))− f(γ(t))||γ′(t)|(tj − tj−1),
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where we used the basic estimate in Lemma 11.8. We next use the com-
pactness of interval [a, b], the boundedness of the continuous function
|γ′(t)| on the compact set [a, b]:

|γ′(t)| ≤M, t ∈ [a, b],

for some M > 0, and the uniform continuity of the continuous function
f(γ(t)) on [a, b] by Theorem 8.25, i.e. given ε > 0, there exists δ > 0 such
that

|sj − t| < δ =⇒ |f(γ(sj))− f(γ(t))| < ε.

Then maxj(tj − tj−1) < δ implies

∆ ≤
∑
j

εM(tj − tj−1) = εM(b− a),

which proves ∆→ 0 as maxj(tj − tj−1)→ 0 as desired. �

11.5. Piecewise C1 paths. For our purposes, it will suffice to consider
only integrals of continuous functions along C1 and piecewise C1 paths.
In order to define it for piecewise C1 paths, observe that (11.2) satisfies
the important additivity property:

Lemma 11.11. Let f : S → C be a continuous function and γ : [a, b]→ S
a continuously differentiable path. Then for every partition a = t0 < . . . <
tn = b, we have∫

γ

f(z)dz =
∑
j

∫
γj

f(z)dz, γj := γ|[tj−1,tj ].

Proof. The proof follows from (11.2) and additivity of the Riemann in-
tegral ∫ b

a

g(t)dt =
∑
j

∫ tj

tj−1

g(t)dt,

where g(t) = f(γ(t))γ′(t). �

Definition 11.12. Let f : S → C be a continuous function and
γ : [a, b]→ S a piecewise C1 path. Consider any partition

a = t0 < . . . < tn = b

such that each γj := γ|[tj−1,tj ] is C1. Then the integral of f along γ is
defined by

(11.4)

∫
γ

f(z)dz :=
n∑
j=1

∫
γj

f(z)dz =
n∑
j=1

∫ tj

tj−1

f(γj(t))γ
′
j(t)dt.
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Note that we need to show the integral is well-defined by proving that
(11.4) is independent of the choice of the partition by tj. To show this,
consider another partition by points sk ∈ [a, b] such that each restriction
γ|[sk−1,sk] is C1 and take the refinement partition defined by the union of
all tj and sk. Then it follows from Lemma 11.11 that the sum in (11.4)
for each of the partitions (tj) and (sk) equals the corresponding sum for
the refinement. Hence all sums are equal as desired.

We can extend Lemma 11.10 to piecewise C1 paths:

Lemma 11.13. Let f : S → C be a continuous function and γ : [a, b]→ S
a piecewise C1 path. Then∫

γ

f(z)dz = lim
maxk(tk−tk−1)→0

∑
k

f(γ(sk))(γ(tk)− γ(tk−1)),

where a = t0 < . . . < tn = b is a partition and sk ∈ [tk−1, tk].

Proof. Fix a partition by t0j as in Definition 11.12. The each integral∫
γj
f(z)dz is the limit of its integral sums. Taking their sum for all k =

0, . . . , n, we obtain we obtain
∫
γ
f(z)dz as limit of integral sums over

partitions that include all t0. A more general partition can be refined
to one including all t0 and can be shown to be arbitrary close to its
refinement as in the proof of Lemma 11.10. �

11.6. Linearity of the integral. Another important property of the
integral the linearity:

Lemma 11.14. Let f, g : S → C be piecewise continuous functions,
γ : [a, b]→ S a piecewise C1 path, and A,B ∈ C. Then

(11.5)

∫
γ

(Af(z) +Bg(z))dz = A

∫
γ

f(z)dz +B

∫
γ

g(z)dz

Proof. Using a partition as in (11.4), it suffices to show (11.5) for γ
continuously differentiable, which follows from the linearity of integral
sums ∑

j

(Af(γ(sj) +Bg(γ(sj))(γ(tj)− γ(tj−1))

= A
∑
j

f(γ(sj)(γ(tj)− γ(tj−1)) +B
∑
j

g(γ(sj))(γ(tj)− γ(tj−1))

and Lemma 11.10. �
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11.7. Example: integral along the unit circle.

Example 11.15. Consider the function f(z) = 1
z

defined on U = C \ {0}
and the closed path

γ(t) = eit, t ∈ [0, 2π],

parametrizing the unit circle:

0 1

Since eiz is C-differentiable with (eiz)′ = ieiz by the chain rule, we
compute the derivative of γ by restricting the limit to the real axis

(eit)′(t0) = lim
t→t0

eit − eit0
t− t0

= lim
z→t0

eiz − eit0
z − t0

= ieit0 ,

and the integral of f along γ as∫
γ

1

z
dz =

∫ 2π

0

1

eit
(eit)′dt =

∫ 2π

0

ieit

eit
dt =

∫ 2π

0

idt = 2πi.

11.8. Antiderivatives and integrals.

Definition 11.16. Let U ⊂ C be open. An antiderivative of a function
f : U → C is any holomorphic function F : U → C with

F ′(z) = f(z), z ∈ U.

The following analogue of the fundamental theorem of calculus can be
a convenient way to compute integrals:

Theorem 11.17. Let U ⊂ C be open, and f : U → C a continuous
function with an antiderivative F . Then for every piecewise C1 path
γ : [a, b]→ U , ∫

γ

f(z)dz = F (γ(b))− F (γ(a)).

Proof. We first assume γ is C1. By the chain rule, for ϕ(t) := F (γ(t)),

ϕ′(t) = F ′(γ(t))γ′(t) = f(γ(t))γ′(t).

Then by Theorem 11.9,∫
γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt =

∫ b

a

ϕ′(t)dt = ϕ(b)−ϕ(a) = F (γ(b))−F (γ(a)),
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proving the claim for any γ of class C1.
More generally, for γ piecewise C1, consider any partition a = t0 <

. . . < tn = b as in Defintion 11.12, so that∫
γ

f(z)dz =
∑
j

∫
γj

f(z)dz,

where each γj is C1. Then we have proved that∫
γj

f(z)dz = F (γ(tj))− F (γ(tj−1)),

and taking the sum over j = 1, . . . , n, we obtain the claim. �

Example 11.18. The power function f(z) = zn has the antiderivative

F (z) = zn+1

n+1
in the entire complex plane U = C. Then for every piecewise

C1 path γ : [a, b]→ U ,∫
γ

zndz =
(γ(b))n+1 − (γ(a))n+1

n+ 1
.

11.9. Reparametrizations of paths.

Lemma 11.19. Let γ : [a, b]→ C be a piecewise C1 path and

ψ : [α, β]→ [a, b]

an increasing piecewise C1 bijection. Then∫
γ◦ψ

f(z)dz =

∫
γ

f(z)dz,

for any continuous function f .

Proof. Taking a partition of [α, β] and corresponding partition of [a, b],
the statement is reduced to the case when f and ψ are C1. Then

(γ ◦ ψ)′(t) = γ′(ψ(t))ψ′(t)

by the chain rule and∫
γ◦ψ

f(z)dz =

∫ β

α

f(γ(ψ(t)))γ′(ψ(t))ψ′(t)dt

=

∫ b

a

f(γ(s))γ′(s)ds =

∫
γ

f(z)dz

by the change of variable in the integral. �
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Lemma 11.20 (orientation reversing reparametrization). Let γ : [a, b]→
C be a piecewise C1 path and

ψ : [α, β]→ [a, b]

a decreasing piecewise C1 bijection. Then∫
γ◦ψ

f(z)dz = −
∫
γ

f(z)dz,

for any continuous function f .

Proof. Consider the increasing bijection

ϕ : [−β,−α]→ [a, b], t 7→ ψ(−t).
Then by Lemma 11.19, ∫

γ◦ϕ
f(z)dz =

∫
γ

f(z)dz.

Taking a partition

−β = t0 < . . . < tn = −α, sj ∈ [tj−1, tj],

we obtain ∑
f(γ(ϕ(sj)))(γ(ϕ(tj))− γ(ϕ(tj−1))

= −
∑

f(γ(ψ(−sj)))(γ(ψ(−tj−1)− γ(ψ(−tj)))
for the corresponding integral sums, proving∫

γ◦ϕ
f(z)dz = −

∫
γ◦ψ

f(z)dz,

and the conclusion follows. �

11.10. Length of path and basic estimate of integral.

Lemma 11.21. Let ϕ : [a, b]→ C be a path. Then∣∣∣∣∫ b

a

ϕ(t)dt

∣∣∣∣ ≤ ∫ b

a

|ϕ(t)|dt.

Proof. Write ∫ b

a

ϕ(t)dt = reiθ

in the polar form. Then∣∣∣∣∫ b

a

ϕ(t)dt

∣∣∣∣ = r = e−iθ
∫ b

a

ϕ(t)dt =

∫ b

a

e−iθϕ(t)dt.
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The right-hand side is a real number, hence it is equal to∫ b

a

Re (e−iθϕ(t))dt ≤
∫ b

a

|e−iθϕ(t)|dt =

∫ b

a

|ϕ(t)|dt.

�

Definition 11.22. The length of a C1 path γ : [a, b]→ C is

L(γ) :=

∫ b

a

|γ′(t)|dt.

The length of a piecewise C1 path is the sum of the lengths of its C1

pieces:

L(γ) :=
∑

L(γj),

where each γj = γ|[tj−1,tj ] is C1 for a partition a = t0 < . . . < tn = b.

Theorem 11.23 (Basic estimate for integral along path). Let f : S → C
be continuous and γ : [a, b]→ S a piecewise C1 path. Then∣∣∣∣∫

γ

f(z)dz

∣∣∣∣ ≤ sup
z∈γ([a,b])

|f(z)|L(γ).

Proof. If γ is C1, we have∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ =

∣∣∣∣∫ b

a

f(γ(t))γ′(t)dt

∣∣∣∣ ≤ ∫ b

a

|f(γ(t))γ′(t)|dt

≤
∫ b

a

(
sup

z∈γ([a,b])

|f(z)|
)
|γ′(t)|dt ≤ sup

z∈γ([a,b])

|f(z)|
∫ b

a

|γ′(t)|dt

in view of Lemma 11.21. Then the right-hand side equals supz∈γ([a,b]) |f(z)|L(γ)
as desired.

More generally, if γ is piecewise C1, let γj be as in Definition 11.22.
Then the statement holds for each γj and the conclusion follows by taking
the sum for all j. �

12. Cauchy’s Theorem

12.1. Oriented boundary. In the following we shall consider open re-
gions D whose boundary can be represented as unions of images of piece-
wise C1 paths:
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D

γ0

γ′0(t)
εiγ′0(t)

−εiγ′0(t)γ0(t)

γ1 γ2

We have seen that the integral along path γ : [a, b]→ C does not change
under increasing reparametrizations [α, β]→ [a, b], but changes sign un-
der decreasing reparametrizations. Hence, need to specify an orientation
for the paths representing the boundary. Intuitively, our convention will
be that the region D remains on the left of each boundary path.

In the above illustration, we use the path γ0, γ1, γ2 to represent the
oriented boundary of D and define the integral∫

∂D

f(z)dz :=
2∑

k=0

∫
γk

f(z)dz

for any continuous function f defined on the boundary ∂D.

Definition 12.1. Let U ⊂ C be open and γ : [a, b]→ C. We say that

(1) D is on the left of a piecewise C1 path with γ([a, b]) ⊂ ∂D, if for
every t ∈ (a, b) where γ′(t) exists,

γ′(t) 6= 0, γ(t) + εiγ′(t) ∈ D, γ(t)− εiγ′(t) ∈ C \D,

holds for every ε > 0 sufficiently small.
(2) a finite union of closed paths γj : [aj, bj] → C represents the ori-

ented boundary of D, if D is on the left of each γj, and

∂D = ∪jγj([aj, bj]), γj([aj, bj]) ∩ γk([ak, bk]) = ∅.

(3) if a finite union of γj represents the oriented boundary of D, we
define the integral∫

∂D

f(z)dz :=
∑
j

∫
γj

f(z)dz,

where f is any continuous function on ∂D.
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12.2. Cauchy-Goursat Theorem for triangle.

Theorem 12.2 (Goursat). Let U ⊂ C be open, f : U → C be holomor-
phic, and T a triangle whose closure T is contained in U . Then∫

∂T

f(z)dz = 0,

where ∂T is the oriented boundary.

Proof. We denote our original triangle by T0 = T and assume by contra-
diction

(12.1)

∣∣∣∣∫
∂T

f(z)dz

∣∣∣∣ =: M > 0.

Then bisect each edge of the triangle and create four new triangles,
∆1,2,3,4, see the above illustration. With our choice of orientation, the
edges in the interior have opposing orientations as oriented boundary
for the triangles on each side. Because of this, the contributions from
integrals along these edges cancel in the sum of

∫
∂Tn

f(z)dz, and∫
∂T0

f(z)dz =
4∑

n=1

∫
∂∆n

f(z)dz.

Then there is at least one triangle T1 among ∆1,2,3,4 such that∣∣∣∣∫
∂T1

f(z)dz

∣∣∣∣ ≥ M

4
.

We keep repeating the same process to obtain a sequence of triangles

T0 ⊃ T1 ⊃ . . . ⊃ Tn . . .

with

(12.2)

∣∣∣∣∫
∂Tn

f(z)dz

∣∣∣∣ ≥ M

4n
.

Next we choose a sequence zn ∈ Tn for n ≥ 1, and claim that (zn) is
Cachy. Writing L(∂Tn) for the perimeter of Tn, we have

L(∂Tn) =
L(∂T )

2n
.
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Then for m ≥ n, we have Tm ⊂ Tn and hence

zm, zn ∈ Tn =⇒ |zm − zn| ≤ L(∂Tn) =
L(∂T )

2n
.

To show that (zn) is a Cauchy sequence, for every ε > 0, choose N with
L(∂T )

2n
< ε for n ≥ N . By Cauchy’s criterion, zn converges to some z0 ∈ T .

Since zm ∈ Tn for all m ≥ n, we also must have z0 ∈ T n.
We next use C-differentiability of f at z0,

lim
z→z0

R(z) = 0, R(z) :=
f(z)− f(z0)− f ′(z0)(z − z0)

z − z0

.

Then

f(z) = f(z0) + f ′(z0)(z − z0) +R(z)(z − z0)

(12.3)

=⇒
∫
∂Tn

f(z)dz =

∫
∂Tn

(f(z0) + f ′(z0)(z− z0))dz+

∫
∂Tn

R(z)(z− z0)dz.

To compute the first integral on the right, observe that the function
g(z) = f(z0) + f ′(z0)(z− z0) is affine and therefore has an antiderivative
G, e.g.

G(z) = f(z0)(z − z0) +
f ′(z0)

2
(z − z0)2.

Since ∂Tn can be represented by a closed path γn : [an, bn]→ C, i.e. with
γn(an) = γn(bn), we have∫

∂Tn

g(z)dz =

∫
γn

g(z)dz = G(γn(bn))−G(γn(an)) = 0

for the 1st integral in (12.3). On the other hand, we use the basic estimate
in Theorem 11.23 for the 2nd integral:

(12.4)

∣∣∣∣∫
∂Tn

R(z)(z − z0)dz

∣∣∣∣ ≤ sup
z∈∂Tn

|R(z)(z − z0)|L(∂Tn).

Since R(z)→ 0, z → z0, for every ε > 0 there exists N such that

n ≥ N =⇒ sup
z∈∂Tn

|R(z)| ≤ ε.

Since z0 ∈ T n for every n, we have

z ∈ ∂Tn =⇒ |z − z0| ≤ L(∂Tn).

Hence

sup
z∈∂Tn

|R(z)(z − z0)|L(∂Tn) ≤ εL(∂Tn)2 =
εL(∂T )2

4n
.
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In view of (12.3) and (12.4), this yields∣∣∣∣∫
∂Tn

f(z)dz

∣∣∣∣ ≤ εL(∂T )2

4n
.

Finally, for ε sufficiently small, we obtain a contradiction with (12.2),
completing the proof. �

12.3. Cauchy’s Theorem for star-shaped sets. For fixed z, w ∈ C,
denote by [z, w] the line segment connecting z and w, i.e.

[z, w] := {(1− t)z + tw : t ∈ [0, 1]}.
Definition 12.3. A subset U ⊂ C is called start-shaped if there exists
z0 ∈ U such that [z, z0] ⊂ U for all z ∈ U .

Example 12.4. Any disc ∆r(a) = {z : |z − a| < r} is star-shaped with
z0 = a, since [a, z] ⊂ ∆r(a) for every z ∈ ∆r(a).

a

z

Lemma 12.5. Let U ⊂ C be open and star-shaped and f : U → C a
continuous function. Suppose

(12.5)

∫
∂T

f(z)dz = 0

for all triangles T with T ⊂ U . Then f has an antiderivative in U , i.e.
a holomorphic function F : U → C with F ′(z) = f(z) for all z ∈ U . In
fact, we can take

(12.6) F (z) =

∫
[z0,z]

f(w)dw,

where z0 ∈ U satisfies [z0, z] ∈ U for all z ∈ U as per Definition 12.3.

Proof. Fix z ∈ U and h small enough so that z+h ∈ U . We need to show
that F (z) is C-differentiable at z and that its derivative equals f(z). In
other words, we need to show that

lim
h→0

F (z + h)− F (z)

h
= f(z).

From the definition (12.6) of F , we find

F (z + h)− F (z) =

∫
[z0,z+h]

f(w)dw −
∫

[z0,z]

f(w)dw,
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where both integrals are taken over the line segments. If we now consider
the third integral

∫
[z,z+h]

f(w)dw, then these three line segments form a

triangle T :

T

z0

z

z + h

By our assumption (12.5),
(12.7)

0 =

∫
∂T

f(w)dw =

∫
[z0,z]

f(w)dw +

∫
[z,z+h]

f(w)dw +

∫
[z+h,z0]

f(w)dw.

The segment [z + h, z0] can be obtained by an orientation reversed
reparametrization of [z0, z + h], hence

−
∫

[z+h,z0]

f(w)dw =

∫
[z0,z+h]

f(w)dw

by Lemma 11.20 and (12.7) becomes∫
[z0,z+h]

f(w)dw −
∫

[z0,z]

f(w)dw =

∫
[z,z+h]

f(w)dw,

i.e.

F (z + h)− F (z) =

∫
[z,z+h]

f(w)dw.

To show that F is an antiderivative of f , consider

F (z + h)− F (z)

h
− f(z) =

1

h

∫
[z,z+h]

f(w)dw − f(z).

It will be convenient to replace f(z) by another integral along the same
segment [z, z + h]. For this, take the affine parametrization

γ(t) = (1− t)z + t(z + h), t ∈ [0, 1],

and compute ∫
[z,z+h]

dw =

∫ 1

0

γ′(t)dt =

∫ 1

0

hdt = h.
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Then

F (z + h)− F (z)

h
− f(z) =

1

h

(∫
[z,z+h]

f(w)dw − f(z)

∫
[z,z+h]

dw

)
=

1

h

∫
[z,z+h]

(f(w)− f(z))dw,

and by the basic estimate,∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ ≤ 1

h
sup

[z,z+h]

|f(w)−f(z)|h = sup
[z,z+h]

|f(w)−f(z)|.

It suffices to observe that the continuity of f at z implies that the right-
hand side converges to 0 as h→ 0, proving F ′(z) = f(z) as desired. �

Corollary 12.6 (Cauchy’s theorem for star-shaped sets). Let U ⊂ C be
open and star-shaped and f be holomorphic in U . Then for every closed
piecewise C1 path γ : [a, b]→ U , we have∫

γ

f(z)dz = 0.

Proof. By the Cauchy-Goursat theorem,∫
∂T

f(z)dz = 0

for any triangle T ⊂ U . Then Lemma 12.5 implies that f has an anti-
derivative F in U . Applying the fundamental theorem of calculus, The-
orem 11.9, we compute∫

γ

f(z)dz = F (γ(b))− F (γ(a)) = 0,

since γ is a closed path. �

12.4. Cauchy’s theorem for polygonal sets.

Definition 12.7. An open set D is polygonal if a union of piecewise affine
paths represents its oriented boundary in the sense of Definition 12.1.

D

Definition 12.8. Let D be a polygonal set.
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(1) A diagonal of D is and open line segment connecting two vertices
of D that lies inside D.

(2) A triangulation of D is a decomposition of D into disjoint union
of triangles by means of removing from D several diagonals.

D
T1 T2 T3

Lemma 12.9 (Existence of triangulations). Every polygonal set D ad-
mits a triangulation into a finite collection of triangles T1, . . . , Tn, such
that every edge of each Tj is either part of the oriented boundary ∂D or
a diagonal which also occurs as edge of another Tk with reversed orien-
tation.

Proof. Remove from D a maximal number of diagonals. Then D splits
into finitely many polygonal sets T1, . . . , Tn as in the lemma. Assume by
contradiction that Tj is not a triangle for some j.

Let v be the leftmost vertex of Tj (take one if there are several), and
u,w are two neighboring vertices of v. If the segment connecting u,w is
a diagonal of Tj, it is another diagonal of T , a contradiction with the
maximality of the number of diagonals.

Otherwise, there must exist vertices v′ inside the triangle with vertices
v, w, u. Let v′ to be the farthest one from the line segment uw, we obtain
another diagonal of T connecting v with v′, again a contradiction.

�
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Theorem 12.10 (Cauchy’s theorem for polygonal sets). Let U ⊂ C be
open and f be holomorphic in U . Then for every polygonal set D with
D ⊂ U , the integral of f over its oriented boundary vanishes:∫

∂D

f(z)dz = 0.

Proof. Choose triangles T1, . . . , Tn as in Lemma 12.9. Taking the sum of
integrals ∑

j

∫
∂Tj

f(z)dz,

observe that contributions along cuts are counted twice with opposite
orientation, hence cancel each other. What remains are the boundary
edges of D, whose contributions’ sum is

∫
∂D
f(z)dz. Therefore∫

∂D

f(z)dz =
∑
j

∫
∂Tj

f(z)dz.

Now each integral in the sum vanishes by the Cauchy-Goursat theorem,
proving the conclusion. �

12.5. Winding numbers. We would like to generalize Cauchy’s theo-
rem for general closed paths γ. If γ = ∂D for a polygonal set D, we
require that the entire set D is contained in the domain of definition of
the given holomorphic function. If γ is more general, we need a replace-
ment for the set D.

For this, we introduce the winding number and show that the winding
number of ∂D around a point z0 is nonzero if and only if z0 ∈ D.

Definition 12.11 (winding number). Let γ : [a, b]→ C be a closed piece-
wise C1 path and z0 /∈ γ([a, b]). Define the winding number of γ around
z0 by

Wγ(z0) :=
1

2πi

∫
γ

dz

z − z0

.

Intuitively, Wγ(z0) equals the total number of times γ travels counter-
clockwise around z0. To see this, we shall compute winding numbers by
means of local antiderivatives of 1

z−z0 as branches of log(z − z0).

Lemma 12.12. Let γ : [a, b]→ C be a path and z0 /∈ γ([a, b]). Then there
exists a partition

(12.8) a = t0 < t1 < . . . < tn = b

and open disks ∆1, . . . ,∆n such that for all j = 1, . . . n:



61

(1) γ([tj−1, tj]) ⊂ ∆j;
(2) z0 /∈ ∆j.

Proof. We apply Lemma 5.14 on the existence of a uniform radius of
disks to the compact set γ([a, b]) contained in the open set U := C\{z0}.
By the Lemma, there exists r > 0 such that

(12.9) z ∈ γ([a, b]) =⇒ ∆r(z) ⊂ U.

Next, since [a, b] is compact and γ is continuous, it is also uniformly
continuous by Theorem 8.25. Hence, there exists δ > 0 such that

(12.10) t, s ∈ [a, b], |t− s| < δ =⇒ |γ(t)− γ(s)| < r.

Now choose any partition (12.8) with |tj−1 − tj| < δ for all j. Then
(12.10) implies

γ([tj−1, tj]) ⊂ ∆r(γ(tj)) =: ∆j,

and ∆j ⊂ U by (12.9) implies z0 /∈ ∆j, as desired. �

Lemma 12.13. Let γ : [a, b]→ C be a piecewise C1 path, and z0, tj and
∆j satisfy the conclusion of Lemma 12.12. Then for each j, there exists
a brach of log(z − z0),

Fj : ∆j → C
such that

(1) Fj is holomorphic in ∆j with F ′j(z) = 1
z−z0 ;

(2)
∫
γj

dz
z−z0 = Fj(γj(tj))− Fj(γj(tj−1)), where γj := γ[tj−1,tj ].

Proof. Assume z0 = 0 and ∆j = ∆r(x) for some real x > 0. Then
∆j ⊂ C \ (−∞, 0], where we can choose Fj(z) := Logz. Then we have
proved that Fj is holomorphic with F ′j(z) = 1

z
and (2) holds by the

complex fundamental theorem of calculus Theorem 11.9.
For a general disk ∆j = ∆r(zj) with 0 /∈ ∆j, choose a branch ϕj : ∆j →

R of arg z, e.g. the one determined by

Argzj − π < ϕj(z) < Argzj + π.

Then
Fj(z) := ln |z|+ iϕj(z)

defines a branch of log z satisfying the conclusion of the lemma.
Finally the case of general z0 is obtained from z0 = 0 by translation:

Fj(z) := F̃j(z − z0), z ∈ ∆j = ∆r(zj), z0 /∈ ∆j,

where F̃j is a branch of log z on ∆r(zj − z0) with 0 /∈ ∆r(zj − z0). �

Corollary 12.14. For every closed piecewise C1 path γ : [a, b]→ C and
z0 /∈ γ([a, b]), the winding number Wγ(z0) is an integer.
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Proof. Choosing the data as in Lemma 12.13, we compute∫
γ

dz

z − z0

=
n∑
j=1

∫
γj

dz

z − z0

=
n∑
j=1

(Fj(γ(tj))− Fj(γ(tj−1)))

= (F1(γ(t1))−F1(γ(t0)))+(F2(γ(t2))−F2(γ(t1)))+. . .+(Fn(γ(tn))−Fn(γ(tn−1)))

Using γ(a) = γ(b) since γ is closed and setting Fn+1 := F1 we can regroup
the sum in the right-hand side as

(F1(γ(t1))−F2(γ(t1)))+. . .+(Fn−1(γ(tn−1))−Fn(γ(tn−1)))+(Fn(γ(tn))−F1(γ(t0)))

=
n∑
j=1

(Fj(γ(tj))− Fj+1(γ(tj)).)

Here each summand is a difference between values at γ(tj)) of different
branches of log(z−z0). Since log(z−z0) consists of values up to an integer
multiple of 2πi, there exist integers nj such that

Fj(γ(tj))− Fj+1(γ(tj)) = 2πinj, nj ∈ Z,
proving that Wγ(z0) is an integer as desired. �

Using the construction of branches of logarithm on disks as in the proof
of Lemma 12.13, we obtain:

Lemma 12.15. Let ∆ be a disk and γ a closed path in ∆. Then

Wγ(z0) = 0

for all z0 /∈ ∆.

Next we investigate the dependence of Wγ(z0) on z0.

Lemma 12.16. Let γ : [a, b] → C be a closed piecewise C1 path. The
winding number Wγ(z0) depends continuously on z0 ∈ C \ γ([a, b]).

Proof. Fix
z0 ∈ U := C \ γ([a, b]).

Since γ([a, b]) is compact and hence closed, U is open. Then there exists
c > 0 with ∆c(z0) ⊂ U . Taking z1 with |z1 − z0| < c/2, we have∣∣∣∣ 1

z − z1

− 1

z − z0

∣∣∣∣ =

∣∣∣∣ z1 − z0

(z − z1)(z − z0)

∣∣∣∣ ≤ 4|z1 − z0|
c2

,

and

|Wγ(z1)−Wγ(z0)| = 1

2π

∣∣∣∣∫
γ

(
1

z − z1

− 1

z − z0

)
dz

∣∣∣∣
≤ 4|z1 − z0|

2πc2
L(γ)
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by the basic estimate Theorem 11.23, and the continuity follows as
claimed. �

Corollary 12.17. Let γ : [a, b]→ C be piecewise C1 and S ⊂ C\γ([a, b])
is connected. Then the winding number Wγ(z0) is constant for z0 ∈ S.

Proof. Indeed, f(z0) := Wγ(z0) is continuous on S and takes values in
Z. Hence f(S) ⊂ Z is connected, which is only possible when f(S) is a
single point, i.e. f = const on S. �

12.6. Winding numbers for oriented boundaries.

Lemma 12.18. Let T be either

(1) an open triangle or
(2) an open disk,

and let γ be the oriented boundary of T . Then

Wγ(z0) =

{
1 z0 ∈ T
0 z0 ∈ C \ T

.

Proof. Assume first T is a triangle. If z0 ∈ C \ T , we have T ⊂ U :=
C \ {z0} and the function

f(z) =
1

z − z0

is holomorphic in U , hence

Wγ(z0) =
1

2πi

∫
γ

f(z)dz = 0

by Cauchy-Goursat.
On the other hand, when z0 ∈ T , there exists a branch F (z) of

log(z − z0), z ∈ C \R,
where R is a ray starting at z0 and passing through the vertex v of T .

T

v z0

If γ : [a, b] → C represents the oriented boundary of T with γ(a) =
γ(b) = v, then for δ > 0 sufficiently small,

γδ := γ|[a+δ,b−δ], γδ : [a+ δ, b− δ]→ C \R,
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and ∫
γδ

dz

z − z0

= F (γ(b− δ))− F (γ(a+ δ)).

Taking the limit as δ → 0 and using the fact that the limits of the branch
F differ by 2πi, we obtain the conclusion for z0 ∈ T .

Now assume T = ∆r(z1) is a disk. If z0 ∈ T , the proof of Wγ(z0) = 1
is analogous to the above case when T is a triangle.

The conclusion for points z0 in the complement of T follows from
Lemma 12.15. �

Theorem 12.19. Let D be a polygonal set with oriented boundary rep-
resented by the disjoint union of closed paths γ1, . . . , γn. Then∑

k

Wγk(z0) =

{
1 z0 ∈ D
0 z0 ∈ C \D

.

Proof. By Lemma 12.9,D admits a triangulation with triangles T1, . . . , Tn.
If z0 ∈ C\D, the function 1

z−z0 is holomorphic in the open set C\{z0}
containing D and the winding number is zero by Cauchy’s theorem.

Assume next z0 ∈ D does not belong to any edge of any Tj. Then∑
k

Wγk(z0) =
1

2πi

∫
∂D

dz

z − z0

=
∑
j

1

2πi

∫
∂Tj

dz

z − z0

.

Since z0 belongs to precisely one triangle Tj, this sum equals 1 in view
of Lemma 12.18.

Finally if z0 ∈ D belongs to an edge of some Tj and choose any z1 ∈ Tj.
Then we have already shown that

∑
kWγk(z1) = 1. Since the line segment

S connecting z0 with z1 is connected and S ⊂ C \ ∂D, Corollary 12.17
implies that ∑

k

Wγk(z0) =
∑
k

Wγk(z1) = 1

as desired. �

12.7. Cauchy’s Integral Formula for polygonal sets. While it can
be difficult to compute specific integrals, it is often easier to compute
their limits when the paths “converge to a point”:

Lemma 12.20. Let U ⊂ C be open with z0 ∈ U , f : U → C be continuous
function, and γ : [a, b]→ C a piecewise C1 path such that

(1) f(z0) = 0;
(2) 0 /∈ γ([a, b]).
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Define
γε(t) := z0 + εγ(t).

Then

lim
ε→0

∫
γε

f(z)

z − z0

dz = 0.

Proof. Since 0 /∈ γ([a, b]), there exists c > 0 with |γ(t)| ≥ c for all
t ∈ [a, b], hence by scaling,

sup
z∈γε([a,b])

∣∣∣∣ 1

z − z0

∣∣∣∣ ≤ 1

εc
.

Also the length of γε can be estimated by

L(γε) ≤ εC

for some C > 0. Then using the basic estimate Lemma 11.23 for the
integral,∣∣∣∣∫

γε

f(z)

z − z0

dz

∣∣∣∣ ≤ sup
z∈γε([a,b])

∣∣∣∣ f(z)

z − z0

∣∣∣∣L(γε) ≤
C

c
sup

z∈γε([a,b])
|f(z)|,

which converges to 0 since limz→z0 f(z) = 0. �

Theorem 12.21 (Cauchy’s Integral Formula for polygonal sets). Let
U ⊂ C be open, f : U → C holomorphic and P an open polygonal set
with P ⊂ U . Then

f(z0) =
1

2πi

∫
∂P

f(z)dz

z − z0

for any z0 ∈ P .

Note that the denominator z− z0 never vanishes for z0 in the open set
P and z in the boundary ∂P .

Proof. Let T be an open triangle with 0 ∈ T and γ be the oriented
boundary of T . Fix z0 ∈ P . Then by Lemma 12.20,

lim
ε→0

∫
∂Tε

f(z)− f(z0)

z − z0

dz = 0, Tε := z0 + εT.

Here Tε is a triangle containing z0. Next,∫
∂Tε

f(z0)

z − z0

dz = f(z0)

∫
∂Tε

1

z − z0

dz = f(z0) · 2πiW∂Tε(z0) = 2πif(z0)

by Lemma 12.18, implying

(12.11) lim
ε→0

∫
∂Tε

f(z)

z − z0

dz = 2πif(z0)
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Furthermore, for ε > 0 sufficiently small,

P ′ := P \ T ε ⊂ U \ {z0}
is a polygonal set and the function

f(z)

z − z0

is holomorphic in U \ {z0}. Then the oriented boundary of P ′ consists
of the oriented boundary of P and the oriented boundary of Tε with re-
verse orientation. Applying Cauchy’s Theorem for polygonal sets (Theo-
rem 12.10), we conclude that(∫

∂P

−
∫
∂Tε

)
f(z)dz

z − z0

= 0.

Using (12.11) and taking limits as ε→ 0, we obtain∫
∂P

f(z)dz

z − z0

− 2πif(z0) = 0

as desired. �

12.8. Cauchy’s theorem for arbitrary paths.

Definition 12.22. Let

γj : [aj, bj]→ C, j = 1, . . . , n,

be closed piecewise C1 paths in C. Define their interior by

Int(γ1, . . . , γn) := {z0 ∈ C \ ∪jγj([aj, bj]) :
∑
j

Wγj(z0) 6= 0}.

Theorem 12.23 (Cauchy’s Theorem: general case). Let U ⊂ C be open,
f : U → C holomorphic, and γ1, . . . , γn closed piecewise C1 paths in U
such that

(12.12) Int(γ1, . . . , γn) ⊂ U.

Then ∑
j

∫
γj

f(z)dz = 0.

The main condition (12.12) is clearly equivalent to

(12.13) z0 /∈ U =⇒
∑
j

Wγj(z0) = 0.

We shall need the following lemma:
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Lemma 12.24. Let U ⊂ C be open and K ⊂ U be compact. Then there
exists an open polygonal set P with

K ⊂ P ⊂ P ⊂ U.

Proof. By Lemma 5.14, there exists r > 0 such that

(12.14) z ∈ K =⇒ ∆r(z) ⊂ U.

Set δ := r/2 and consider the squares

Skl := {z ∈ C : kδ ≤ Re z ≤ (k + 1)δ, lδ ≤ Im z ≤ (l + 1)δ}, k, l ∈ Z.

Since K is bounded, there exists finitely many Skl intersecting K. Let P̃

be the union of all such squares Skl, and P be the interior of P̃ . Then P
satisfies the desired conclusion. �

Proof of Theorem 12.23. We would like to apply Lemma 12.24 to the set

K := Int(γ1, . . . , γn)
⋃
∪jγj([aj, bj]).

For this, observe that the complement

C \K = {z0 ∈ C \
⋃
j

γj([aj, bj]) :
∑
j

Wγj(z0) = 0}.

is open as consequence of Corollary 12.17, since each point in V :=
C \
⋃
j γj([aj, bj]) is surrounded by a connected open disk in V , where all

winding numbers are constant.
Furthermore, since ∪jγj([aj, bj]) is compact, it is contained in a disk

∆ and all winding numbers Wγj(z0) = 0 for z0 /∈ D by Lemma 12.15,
implying K ⊂ ∆. Then K is closed and bounded, hence it is compact by
Heine-Borel’s theorem.

Now we can apply Lemma 12.24 to obtain an open polygonal set P
with

K ⊂ P ⊂ P ⊂ U.

Next, by Cauchy’s integral formula Theorem 12.21, for every z ∈ K,

f(z) =
1

2πi

∫
∂P

f(w)dw

w − z
.

Since γj([aj, bj]) ⊂ K for all j,∑
j

∫
γj

f(z)dz =
∑
j

∫
γj

(
1

2πi

∫
∂P

f(w)dw

w − z

)
dz

=
1

2πi

∑
j

∫
∂P

(∫
γj

f(w)dz

w − z

)
dw =

1

2πi

∑
j

∫
∂P

f(w)

(∫
γj

dz

w − z

)
dw.
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= −
∫
∂P

f(w)

(∑
j

Wγj(w)

)
dw,

where we used the standard result on switching the order of integration
for continuous functions.

Finally, since ∂P ∩K = ∅, for w ∈ ∂P , we must have w /∈ K, hence∑
j

Wγj(w) = 0

and the above integral vanishes proving the desired conclusion. �

Example 12.25. Let ∆1, ∆2 be open disks in C,

z0 ∈ ∆1 ∩∆2,

and consider the holomorphic function

f(z) =
z sin z

z − z0

, z ∈ U := C \ {z0}.

Denote by γ1 the oriented boundary of ∆1 and by γ2 the boundary of ∆2

with reverse orientation. Then by Lemma 12.18,

Wγ1(z0) = 1, Wγ2(z0) = −1 =⇒ Wγ1(z0) +Wγ2(z0) = 0

=⇒ Int(γ1, γ2) = {z ∈ C : Wγ1(z) +Wγ2(z) 6= 0} ⊂ C \ {z0} = U.

Hence all assumptions of Cauchy’s Theorem are satisfied and we conclude∫
γ1

f(z)dz +

∫
γ2

f(z)dz = 0.

13. Cauchy’s Residue Theorem

13.1. Residues. In Cauchy’s theorem, the function is assumed holomor-
phic in the given open set. However, in many applications, functions are
only holomoprhic outside a finite sets of points. A simple example is the

ration function f(z) = P (z)
Q(z)

which is holomorphic outside the zero set of

Q.

Definition 13.1. A point z0 is called an isolated singularity for a function
f if f is holomorphic in a punctured disk ∆r(z0) \ {z0} for some r > 0.

Definition 13.2 (Residue). Let f be holomorphic in a punctured disk
∆r(z0) \ {z0}. The Residue of f at z0 is given

Resz0f :=
1

2πi

∫
∂∆ε(z0)

f(z)dz,

where 0 < ε < r.
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Note that Resz0f is well-defined, i.e. is independent of ε. Indeed, if
0 < ε1 < ε2 < r, let γ2 be the oriented boundary of ∆ε2(z0) and γ1 the
oriented boundary of ∆ε1(z0) with reverse orientation. Then

Int(γ1, γ2) = ∆ε2(z0) \∆ε1(z0) ⊂ ∆r(z0) \ {z0},
and by Cauchy’s theorem,∫

∂∆ε2 (z0)

f(z)dz −
∫
∂∆ε1 (z0)

f(z)dz = 0,

hence the integral in Definition 13.2 is indeed independent of ε.
As warming-up example, consider the simplest situation:

Lemma 13.3. Let the function f be holomorphic in the disk ∆r(z0).
Then

Resz0f = 0.

Proof. Indeed, ∆r(z0) is star-shaped and by the Cauchy’s Theorem,

Resz0f =
1

2πi

∫
∂∆ε(z0)

f(z)dz = 0,

hence the residue of f is always 0 at every point of an open set where f
is holomorphic. �

In view of this lemma, only points where function is not holomorphic
(or not defined) are those where the residue may not be zero.

Example 13.4. Using our computation of the winding number in
Lemma 12.18, we obtain

Resz0
1

z − z0

=
1

2πi

∫
∂∆ε(z0)

1

z − z0

dz = W∂∆ε(z0)(z0) = 1,

which explains the division by the constant 2πi in Definition 13.2.

We have the following generalisation of the above example:

Lemma 13.5. Let f be holomorphic in the punctured disk ∆r(z0) \ {z0}
and continuous in ∆r(z0). Then:

(1)

Resz0
f(z)

z − z0

= f(z0);

(2) if g is holomorphic in ∆r(z0) with g(z0) = 0, g′(z0) 6= 0, and
g(z) 6= 0 for z ∈ ∆r(z0) \ {z0},

Resz0
f(z)

g(z)
=
f(z0)

g′(z0)
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Proof. For (1), compute

Resz0
f(z)

z − z0

=
1

2πi

∫
∂∆ε(z0)

f(z)

z − z0

dz

=
1

2πi

(∫
∂∆ε(z0)

f(z0)

z − z0

dz +

∫
∂∆ε(z0)

f(z)− f(z0)

z − z0

dz

)
,

where ε > 0 is sufficiently small. By the above example, the first integral
is

2πif(z0)

independently of ε. Then the second integral is also independent of ε,
and hence it is equal to its limit as ε → 0. Now Lemma 12.20 implies
that the second integral must vanish, proving the conclusion in (1).

To show (2), since g(z0), we can write

f(z)

g(z)
=

h(z)

z − z0

, h(z) := f(z)
z − z0

g(z)− g(z0)
.

Here h(z) is defined for z 6= z0 and we can extend it to a continuous

function in ∆r(z0) by setting h(z0) := f(z0)
g′(z0)

. Then the extension of h

satisfies the assumptions of (1) and (2) follows from (1) applied to this
case. �

Example 13.6. For every z0 ∈ C and n ∈ Z, n ≥ 2, the function

f(z) =
1

(z − z0)n
= (z − z0)−n

has the antiderivative

F (z) =
1

(−n+ 1)(z − z0)−n+1
, z ∈ C \ {z0}.

Hence the integral of f vanishes along any closed path, in particular,

Resz0
1

(z − z0)n
=

1

2πi

∫
∂∆ε(z0)

1

(z − z0)n
dz = 0.

13.2. Cauchy’s Residue Theorem.

Theorem 13.7 (Cauchy’s Residue Theorem). Let U ⊂ C be open,
z1, . . . , zm ∈ U ,

f : U \ {z1, . . . , zm} → C
be holomorphic, and γ1, . . . , γn be closed piecewise C1 paths in U \
{z1, . . . , zm} such that

(13.1) Int(γ1, . . . , γn) ⊂ U.
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Then ∑
j

∫
γj

f(z)dz = 2πi
∑
j,k

Wγj(zk)Reszkf.

Proof. The main idea is to add to γj small circles around zk and apply
Cauchy’s theorem in U \{z1, . . . , zm}. For each zk, k = 1, . . . ,m, consider

a disk ∆ε(zk). Choose ε > 0 sufficiently small so that ∆ε(zk) ⊂ U and

(13.2) ∆ε(zk) ∩∆ε(zl) = ∅, k 6= l.

In order to apply Cauchy’s theorem in U \ {z1, . . . , zm}, we need to
construct closed paths ϕl so that

Int(γ1, . . . , γn, ϕ1, . . . , ϕs) ⊂ U \ {z1, . . . , zm}.
For every k = 1, . . . ,m, set

lk :=
∑
j

Wγj(zk),

and let ϕks for s = 1, . . . , |lk|, be either |lk| copies of the oriented bound-
ary of ∆ε(zk) if lk < 0 or |lk| copies of the oriented boundary of ∆ε(zk)
with reverse orientation if lk > 0. Then in each case∑

j

Wγj(zk) +
∑
s

Wϕks(zk) = 0.

Collecting such ϕks for all k and using (13.2), we obtain∑
j

Wγj(zk) +
∑
k,s

Wϕks(zk) = 0

for all k. On the other hand, if z0 /∈ U , (13.1) implies∑
j

Wγj(z0) +
∑
k,s

Wϕks(z0) = 0.

Hence
Int(γ1, . . . , γn, ϕ1, . . . , ϕs) ⊂ U \ {z1, . . . , zm},

where ϕ1, . . . , ϕs are all ϕks reindexed.
Applying Cauchy’s theorem to f in U \ {z1, . . . , zm} we conclude

(13.3)
∑
j

∫
γj

f(z)dz +
∑
l

∫
ϕl

f(z)dz = 0,

and by our choice of ϕl,∑
l

∫
ϕl

f(z)dz = −2πi
∑
k

lkReszkf = −2πi
∑
j,k

Wγj(zk)Reszkf,
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which together with (13.3) proves the desired conclusion. �

Example 13.8. The function

f(z) =
2ez

z2 − 1
=

2ez

(z − 1)(z + 1)
=

ez

z − 1
− ez

z + 1

is holomorphic in

C \ {−1, 1}.
By Lemmata 13.3 and 13.5, we compute the residues

Res−1f = Res−1
ez

z − 1
− Res−1

ez

z + 1
= 0− e−1 = −1

e
,

Res1f = Res1
ez

z − 1
− Res1

ez

z + 1
= e1 − 0 = e.

Now we use the Residue Theorem for U = C to compute integrals of
f along boundaries of disks.

First, consider the disk ∆3(0) with center 0 and radius 3, which con-
tains both points −1 and 1. If γ1 is the oriented boundary of ∆3(0), we
have shown in Lemma 12.18 that

Wγ1(−1) = Wγ1(1) = 1.

Then by Cauchy’s Residue Theorem,∫
∂∆3(0)

f(z)dz =

∫
γ1

f(z)dz = 2πi(Wγ1(−1)Res−1f +Wγ1(1)Res1f)

= 2πi(Res−1f + Res1f) = 2πi(e− 1/e).

Next, consider the disk ∆1(−1) with center −1 and radius 1, which
contains only −1 but not 1. If γ2 is the oriented boundary of ∆1(−1), by
Lemma 12.18,

Wγ1(−1) = 1, Wγ1(1) = 0,

hence by Cauchy’s Residue Theorem,∫
∂∆1(−1)

f(z)dz =

∫
γ2

f(z)dz = 2πi(Wγ2(−1)Res−1f +Wγ2(1)Res1f)

= 2πiRes−1f = −2πi

e
.

Finally, consider the disk ∆1(1) with center 1 and radius 1, which
contains only 1 but not −1. If γ3 is the oriented boundary of ∆1(1), by
Lemma 12.18,

Wγ3(−1) = 0, Wγ3(1) = 1,
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hence by Cauchy’s Residue Theorem,∫
∂∆1(1)

f(z)dz =

∫
γ3

f(z)dz = 2πi(Wγ3(−1)Res−1f +Wγ3(1)Res1f)

= 2πiRes1f = 2πie.

14. Application of Cauchy’s Residue Theorem to integrals

The Residue Theorem is a powerful tool that can be applied to evaluate
real integrals of real functions.

14.1. Trigonometric integrals. Consider integrals of the form

(14.1)

∫ 2π

0

R(cos t, sin t)dt,

where R is a rational function.
To evaluate (14.1), rewrite (14.1) as the complex integral along the

path

γ(t) = cos t+ i sin t = eit, t ∈ [0, 2π],

and use the substitution

(14.2) z = eit, cos t =
z + z−1

2
, sin t =

z − z−1

2i
:∫ 2π

0

R(cos t, sin t)dt =

∫ 2π

0

R(cos t, sin t)
1

γ′(t)
γ′(t)dt

=

∫
∂∆1(0)

R

(
z + z−1

2
,
z − z−1

2i

)
1

iz
dz,

where the latter integral can be evaluated by means of the Residue The-
orem.

Example 14.1. Consider the integral

I =

∫ 2π

0

dt

1− 2p cos t+ p2
,

where p is a real or complex parameter. Substituting (14.2) as above, we
obtain

I =

∫
∂D1(0)

1

1− 2p z+z
−1

2
+ p2

dz

iz
=

1

i

∫
∂D1(0)

dz

z − pz2 − p+ p2z

=
1

i

∫
∂D1(0)

dz

(z − p)(1− pz)
=

1

i

∫
∂D1(0)

f(z)dz,
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where

f(z) =
1

(z − p)(1− pz)

is holomorphic in C \ {p, p−1} if p 6= 0. (If p = 0, the integral is easy to
calculate: I = 2π.)

Now with γ being the oriented boundary of the unit disk ∆1(0), we
compute the winding numbers

Wγ(p) =

{
1 p ∈ ∆1(0) ⇐⇒ |p| < 1

0 p /∈ ∆1(0) ⇐⇒ |p| > 1
,

and

Wγ(p
−1) =

{
1 p−1 ∈ ∆1(0) ⇐⇒ |p| > 1

0 p−1 /∈ ∆1(0) ⇐⇒ |p| < 1
.

When |p| = 1, the function f is not continuous on the unit circle, the
integral is improper and we cannot apply our method directly. Otherwise,
by the Residue Theorem,

(14.3) I =
1

i
2πi
(
Wγ(p)Respf +Wγ(p

−1)Resp−1f
)
.

By Lemma 13.5, calculate the residues

Resp
1

(z − p)(1− pz)
= Resp

g(z)

(z − p)
= g(p) =

1

1− p2
,

where

g(z) =
1

1− pz
,

and

Resp−1

1

(z − p)(1− pz)
= Resp−1

k(z)

h(z)
=
k(p−1)

h′(p−1)
=

1

p−1 − p
· 1

−p
=

1

p2 − 1
,

where

k(z) =
1

z − p
, h(z) = 1− pz.

Then finally, (14.3) becomes

I =

{
2π

1−p2 |p| < 1
2π
p2−1

|p| > 1
.
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14.2. Improper integrals.

Definition 14.2. The principal value of the improper integral is defined
by

p.v.

∫ ∞
−∞

f(x)dx := lim
c→+∞

∫ c

−c
f(x)dx.

Lemma 14.3. Let U be an open set in C,

z1, . . . , zm ∈ {z : Im z > 0} ⊂ {z : Im z ≥ 0} ⊂ U,

and F a holomorphic function in U \ {z1, . . . , zm}. Assume

(14.4) lim
z→∞

zF (z) = 0.

Then

p.v.

∫ ∞
−∞

F (x)dx = 2πi
∑
k

ReszkF.

Proof. Consider the half-disk

D := {z ∈ ∆R(0) : Im z > 0}, R > 0.

γ1

γ2

R−R

z1

z2·
·

Let γ be the oriented boundary of D consisting of the line segment γ1

and the half-circle γ2. We choose R > 0 sufficiently large such that

D 3 z1, . . . , zm

which implies Wγ(zk) = 1 for all k. The by the Cauchy’s Residue Theo-
rem,

(14.5)

∫
γ1

F (z)dz +

∫
γ2

F (z)dz = 2πi
∑
k

ReszkF.

The half-circle integral can be estimated as∣∣∣∣∫
γ2

F (z)dz

∣∣∣∣ ≤ sup
|z|=R,Im z≥0

|F (z)| · L(γ2)

≤ 2πR sup
|z|=R

|F (z)| = 2π sup
|z|=R

|zF (z)| → 0, R→ +∞,
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by the assumption (14.4). Since the right-hand side in (14.5) is inde-
pendent of R, the first integral must converge to the right-hand side as
R→ +∞ and we obtain

lim
R→+∞

∫
γ1

F (z)dz = p.v.

∫ ∞
−∞

F (x)dx = 2πi
∑
k

ReszkF

as desired. �

Example 14.4. Consider the integral

I =

∫ ∞
−∞

x2

1 + x4
dx.

We extend the function under the integral to

F (z) :=
z2

1 + z4
,

which is holomorphic everywhere except zeroes of 1 + z4. Solving

1 + z4 = 0 ⇐⇒ z4 = −1 ⇐⇒ z = e
iπ+2iπk

4 , k = 1, 2, 3, 4,

we find precisely two zeros

z1 = e
iπ
4 , z2 = e

3iπ
4

in the upper-half plane:

e
iπ
4

e
7iπ
4

e
3iπ
4

e
5iπ
4

Then F is holomorphic in

U \ {z1, z2}, z1 = e
iπ
4 , z2 = e

3iπ
4 , U := C \ {e

5iπ
4 , e

7iπ
4 }.

Furthermore,

zF (z) =
z3

1 + z4
→ 0, z →∞,
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proving the assumption (14.4) in Lemma 14.3. By the lemma,

p.v.

∫ ∞
−∞

x2

1 + x4
dx = 2πi(Resz1F + Resz2F ).

Finally, use Lemma 13.5 to compute the residues:

Resz1F = Res
e
iπ
4

z2

1 + z4
=

z2

4z3

∣∣∣
z=e

iπ
4

=
1

4z

∣∣∣
z=e

iπ
4

=
e
−iπ
4

4
=

1− i
4
√

2
,

Resz2F = Res
e
3iπ
4

z2

1 + z4
=

z2

4z3

∣∣∣
z=e

3iπ
4

=
1

4z

∣∣∣
z=e

3iπ
4

=
e
−3iπ

4

4
=
−1− i
4
√

2
,

and

I = 2πi

(
e
−iπ
4

4
+
e
−3iπ

4

4

)
= 2πi

2(−i)
4
√

2
=

π√
2
.

14.3. Fourier transform. Recall that the Fourier transform of a func-
tion f(x) is given by

f̂(λ) =
1√
2π

∫ ∞
−∞

f(x)e−iλxdx.

The following general lemma provides conditions when the Fourier
transform can be calculated by means of the Residue Theorem:

Lemma 14.5. Let U be an open set in C,

z1, . . . , zm ∈ {z : Im z > 0} ⊂ {z : Im z ≥ 0} ⊂ U,

and F a holomorphic function in U \ {z1, . . . , zm}. Assume

(14.6) lim
z→∞

F (z) = 0.

Then for λ > 0, we have∫ ∞
−∞

F (x)eiλxdx = 2πi
∑
k

Reszk(F (z)eiλz).

The case λ < 0 can be reduced to λ > 0 by the substitution x 7→ −x.

Proof. We shall apply the Residue Theorem to the oriented boundary of
a rectangle, where we denote the edges by γ0, γ1, γ2, γ3:
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−r s

s+ iq−r + iq

z1

z2·
·

γ0

γ2

γ1γ3

Choose r, s, q sufficiently large to ensure the rectangle contains all given
points z1, . . . , zm. Then the Residue Theorem yields

(14.7)
3∑
j=0

∫
γj

F (z)eiλzdz = 2πi
∑
k

Reszk(F (z)eiλz).

Consider the integrals

Ij :=

∫
γj

F (z)eiλzdz,

where

I0 =

∫ s

−r
F (x)eiλxdx.

We next estimate I1, I2, I3. Parametrizing γ1(t) = s + it, t ∈ [0, q], we
calculate

|I1| =
∣∣∣∣∫ q

0

F (s+ it)eiλ(s+it)dt

∣∣∣∣ ≤ sup
image(γ1)

|F |
∫ q

0

e−λtdt

= sup
image(γ1)

|F |1− e
−λq

λ
≤ sup

image(γ1)

|F |1
λ
→ 0, s→∞,

in view of the assumption (14.6). Similarly, we have

|I3| ≤ sup
image(γ3)

|F |1
λ
→ 0, r →∞.

Finally, for the top edge, we have by the basic estimate,

(14.8) |I2| ≤ sup
[−r+iq,s+iq]

|F (z)eiλz|(r + s) = sup
[−r+iq,s+iq]

|F |e−λq(r + s).

Now fixing ε > 0, for r, s sufficiently large, we have

|I1| < ε/3, |I3| < ε/3.

Next, fixing such r, s and choosing q sufficiently large, we have by (14.8),

|I2| < ε/3.
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Substituting into (14.7), this yields∣∣∣∣∣
∫ s

−r
F (x)eiλxdx− 2πi

∑
k

Reszk(F (z)eiλz)

∣∣∣∣∣ < ε

for s, r sufficiently large. Since ε > 0 is arbitrary, we obtain the desired
formula for the improper integral. �

Example 14.6. Let us compute

I =

∫ ∞
−∞

eiλx

x2 + a2
dx, a > 0,

which is the Fourier transform of the function f(x) = 1
x2+a2

. The real
function f is defined and continuous for all x ∈ R, and extends to the
complex function

F (z) =
1

z2 + a2
=

1

(z − ia)(z + ia)
,

which is holomorphic in C \ {ia,−ia}. Since a > 0, only ia is contained
in the upper-half plane Im z > 0.

Then we can apply Lemma 14.5 with

U = C \ {−ia}, F ∈ O(U \ {ia}),
where O stands for holomorphic. Indeed, the assumption

lim
z→∞

1

z2 + a2
= 0

is satisfied and the lemma yields

I =

∫ ∞
−∞

eiλx

x2 + a2
dx = 2πiResia

eiλz

z2 + a2
= 2πi

eiλz

2z

∣∣∣
z=ia

=
πe−λa

a
.

14.4. Mellin transform. The Mellin transform of a function f(x) is
given by

{Mf}(s) =

∫ ∞
0

f(x)xs−1dx.

The following lemma demonstrates how Residue Theorem can be used
to calculate the Mellin transform. A difficulty encountered here is due
to the multi-valued nature of the power function zs−1 = e(s−1) log z when
extending the real power xs−1.

Convention: We shall use the branch l(z) = ln |z| + iϕ(z) of log z in
C \ R≥0 with 0 < ϕ(z) < 2π, so that

lim
z→x, Im z>0

l(z) = ln x, lim
z→x, Im z<0

l(z) = ln x+ 2πi, x ∈ R>0.
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Then by a slight abuse of notation, we shall write zs = esl(z) for the
branch of the power function satisfying

lim
z→x,Im z>0

zs = xs, lim
z→x,Im z<0

zs = e2πisxs, x ∈ R>0.

Lemma 14.7. Let
z1, . . . , zm /∈ R≥0

and F a holomorphic function in C \ {0, z1, . . . , zm}.
Assume s ∈ R \ Z is such that

(14.9) lim
z→0
|F (z)||z|s = lim

z→∞
|F (z)||z|s = 0.

Then we have∫ ∞
0

F (x)xs−1dx =
2πi

1− e2πi(s−1)

∑
k

Reszk(F (z)zs−1).

Note that the choice s /∈ Z guarantees that the denominator does not
vanish.

Proof. We apply the Residue Theorem to the oriented boundary of the
annulus with a sector removed as shown below:

γ1

γ3

γ4γ2
0

R

rz1

z2·
·

We obtain

(14.10)
4∑
j=1

∫
γj

F (z)zs−1dz = 2πi
∑
k

Reszk(F (z)zs−1).

Write

Ij :=

∫
γj

F (z)zs−1dz
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and estimate by (14.9)

|I2| ≤ sup
image(γ2)

|F (z)zs−1| · 2πR = 2π sup
image(γ2)

|F (z)||z|s → 0, R→∞,

and similarly,

|I4| ≤ sup
image(γ4)

|F (z)zs−1| · 2πr = 2π sup
image(γ4)

|F (z)||z|s → 0, r → 0.

Fixing r and R and shrinking the sector to 0, so that both γ2 and γ4

approach the full circles, the path γ1 approaches the interval [r, R] and
hence

I1 →
∫ R

r

F (x)xs−1dx, I3 → −e2πi(s−1)

∫ R

r

F (x)xs−1dx,

as the angle θ between γ1 and γ3 tends to 0.
Fixing ε > 0, we have |I2| < ε/2 for R sufficiently large, and |I4| < ε/2

for r sufficiently small. Then for θ → 0, (14.10) yields∣∣∣∣∣(1− e2πi(s−1))

∫ R

r

F (x)xs−1dx− 2π
∑
k

Reszk(F (z)zs−1)

∣∣∣∣∣ < ε,

and taking the limit as r → 0, R→ +∞,

(1− e2πi(s−1))

∫ ∞
0

F (x)xs−1dx = 2π
∑
k

Reszk(F (z)zs−1),

from which the desired formula follows. �

Example 14.8. Consider the Mellin transform

I =

∫ ∞
0

xs−1

1 + x
dx, 0 < s < 1.

Then F (z) = 1
1+z

is holomorphic in C \ {−1} and

lim
z→0

|z|s

|1 + z|
= lim

z→∞

|z|s

|1 + z|
= 0,

hence we can apply Lemma 14.7 to obtain

I =
2πi

1− e2πi(s−1)
Res−1

zs−1

1 + z
=

2πi

1− e2πi(s−1)
(−1)s−1

=
2πi

1− e2πi(s−1)
e(s−1)l(−1) =

2πi

1− e2πi(s−1)
eπi(s−1)

=
2πi

e−πi(s−1) − eπi(s−1)
= − π

sin π(s− 1)
.
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15. Cauchy’s Integral formula and applications

15.1. Cauchy’s Integral formula: general case. We have previously
established the Cauchy’s Integral formula for polygonal sets. Now we use
Cauchy’s Residue Theorem to obtain the following more general version.

Theorem 15.1 (Cauchy’s Integral formula). Let U ⊂ C be open, z0 ∈ U ,

f : U → C

holomorphic function, and γ1, . . . , γn paths in U \ {z0} such that

(15.1) Int(γ1, . . . , γn) ⊂ U.

Then ∑
j

Wγj(z0)f(z0) =
1

2πi

∑
j

∫
γj

f(z)dz

z − z0

.

Proof. We apply Cauchy’s Residue Theorem in U \ {z0} to the function

g(z) =
f(z)

z − z0

,

which yields ∑
j

∫
γj

f(z)dz

z − z0

= 2πi
∑
j

Wγj(z0)Resz0
f(z)

z − z0

,

and the conclusion follows from Lemma 13.5. �

The following special case arises in many application:

Corollary 15.2 (Cauchy’s Integral formula for disks). Let D0, D1, . . . , Dn

be open disks with

Dj ⊂ D0, Dj ∩Dk = ∅, j 6= k, j, k ∈ {1, . . . , n},

U ⊂ C an open set with

U ⊃ D0 \ (D1 ∪ . . . ∪Dn)

and

f : U → C
a holomorphic function. Then

f(z0) =
1

2πi

(∫
∂D0

−
n∑
j=1

∫
∂Dj

)
f(z)dz

z − z0

, z0 ∈ D0 \ (D1 ∪ . . . ∪Dn).
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Proof. Consider the special case of Theorem 15.1, where γ0 is the oriented
boundary of D0 and γj is the reverse oriented boundary of Dj for j =
1, . . . , n. Since

Int(γ0, γ1, . . . , γn) = D0 \ (D1 ∪ . . . ∪Dn) ⊂ U,

we can apply Theorem 15.1 to obtain

n∑
j=0

Wγj(z0)f(z0) =
1

2πi

(∫
∂D0

−
n∑
j=1

∫
∂Dj

)
f(z)dz

z − z0

,

which yields the desired conclusion for

z0 ∈ D0 \ (D1 ∪ . . . ∪Dn)

since

Wγ0(z0) = 1, Wγj(z0) = 0, j = 1, . . . , n.

�

15.2. Mean value property.

Corollary 15.3 (Mean value property for holomorphic functions). For
every function f holomorphic in an open set containing the closed disk
∆r(z0), the value at the center z0 of the disk equals the mean value over
the circle ∂∆r(z0), i.e.

f(z0) =
1

2π

∫ 2π

0

f(z0 + reit)dt.

Proof. Applying Corollary 15.2 to the disk ∆r(z0), we obtain

f(z0) =
1

2πi

∫
∂∆r(z0)

f(z)dz

z − z0

.

Parametrizing ∂∆r(z0) as

γ(t) = z0 + reit, t ∈ [0, 2π],

we calculate

f(z0) =
1

2πi

∫ 2π

0

f(z0 + reit)

reit
rieitdt,

which yields the desired formula. �
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15.3. Maximum modulus principle.

Theorem 15.4 (Local maximum modulus principle). Let f be a holo-
morphic function in an open set U such that the modulus function

z 7→ |f(z)|

achieves a local maximum at z0. Then f is constant in some disk ∆ε(z0),
ε > 0.

Proof. Choose any ε > 0 such that ∆ε(z0) ⊂ U . Then

f(z0) =
1

2π

∫ 2π

0

f(z0 + εeit)dt

by the mean value property, which implies

|f(z0)| ≤ 1

2π

∫ 2π

0

|f(z0 + εeit)|dt

(15.2) =⇒ 1

2π

∫ 2π

0

(|f(z0)| − |f(z0 + εeit)|)dt ≤ 0.

On the other hand, if z0 is a local maximum for |f(z)|, then

(15.3) |f(z0)| − |f(z0 + εeit)| ≥ 0, t ∈ [0, 2π],

for any sufficiently small ε > 0. Since f is continuous, both (15.2) and
(15.3) can only hold if

|f(z0)| = |f(z0 + εeit)|, t ∈ [0, 2π],

i.e. |f(z)| ≡ const in ∆ε(z0).
If |f(z)| ≡ c = 0, then f ≡ 0 as desired. Otherwise, c := f(z0) 6= 0,

and

g(z) := Log(
1

c
f(z)) = ln

|f(z)|
c

+ iArg
1

c
f(z) = iArg

1

c
f(z)

is a well-defined local branch of log(1
c
f(z)) in ∆ε(z0) for ε > 0 sufficiently

small. Then g(z) is a holomorphic function with Re g ≡ 0, hence also
Im g ≡ const by the Cauchy-Riemann equations. Therefore g ≡ const
implying

f(z) = ceg(z) ≡ const

as desired. �
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15.4. Power series expansion.

Definition 15.5. A power series centered at z0 is any series of the form∑
n≥0

cn(z − z0)n, cn ∈ C.

Theorem 15.6. Let f be a holomorphic function in a disk

∆R(z0), 0 < R ≤ +∞.
Then f has the power series expansion

f(z) =
∑
n≥0

cn(z − z0)n, z ∈ ∆R(z0),

where

cn =
1

2πi

∫
∂∆r(z0)

f(z)

(z − z0)n+1
dz, 0 < r < R, n = 0, 1, . . . .

Proof. By Cauchy’s integral formula for the disk ∂∆r(z0),

(15.4) f(z) =
1

2πi

∫
∂∆r(z0)

f(w)dw

w − z
, z ∈ ∆r(z0).

The idea is to expand in a power series centered at z0 the function under
the integral for each fixed w. For this, write

(15.5)
1

w − z
=

1

w − z0

· 1

1− z−z0
w−z0

=
∑
n≥0

(z − z0)n

(w − z0)n+1
,

for which we have the majorant series∑
n≥0

∣∣∣∣ (z − z0)n

(w − z0)n+1

∣∣∣∣
that converges since

z ∈ ∆r(z0), w ∈ ∂∆r(z0) =⇒
∣∣∣∣ z − z0

w − z0

∣∣∣∣ =
|z − z0|

r
< 1.

Since also f is bounded on the compact set ∂Dr(z0),∣∣∣∣f(w)(z − z0)n

(w − z0)n+1

∣∣∣∣ ≤ sup∂∆r(z0) |f |
r

·
∣∣∣∣z − z0

r

∣∣∣∣n ,
the Weierstrass M-test implies that∑

n≥0

f(w)(z − z0)n

(w − z0)n+1
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converges uniformly for w ∈ ∂∆r(z0) and z ∈ ∆r(z0) fixed. Then the
basic estimate for the integral implies that the sum of the integrals of
summands converges to the integral of the sum:∫

∂∆r(0)

∑
n≥0

f(w)(z − z0)n

(w − z0)n+1
dw =

∑
n≥0

∫
∂∆r(0)

f(w)(z − z0)n

(w − z0)n+1
dw,

and (15.4) becomes

f(z) =
1

2πi

∫
∂∆r(0)

∑
n≥0

f(w)(z − z0)n

(w − z0)n+1
dw

=
∑
n≥0

(
1

2πi

∫
∂∆r(0)

f(w)

(w − z0)n+1
dw

)
(z − z0)n =

∑
n≥0

cn(z − z0)n,

where the coefficients

(15.6) cn =
1

2πi

∫
∂∆r(z0)

f(w)

(w − z0)n+1
dw, n = 0, 1, . . . ,

are as in the theorem. This shows the power series expansion for z ∈
∆r(z0). However, for every z ∈ ∆R(z0), there exists 0 < r < R with
z ∈ ∆r(z0). Since the right-hand side in (15.6) is independent of r by
Cauchy’s theorem, the power series expansion

f(z) =
∑
n≥0

cn(z − z0)n

holds for all z ∈ ∆R(z0) as stated. �

15.5. Laurent series expansion. A Laurent series is a generalization
of a power series with both negative and positive powers:

Definition 15.7 (Laurent series). A Laurent series centered at z0 is any
series of the form

(15.7)
∞∑

n=−∞

cn(z − z0)n, cn ∈ C.

Convergence for Laurent series is defined by taking separately parts
with positive and negative powers:

Definition 15.8. A Laurent series (15.7) is said to be convergent if both
series

(15.8)
∑
n≥0

cn(z − z0)n,
∑
n<0

cn(z − z0)n

are convergent, in which case the sum of both limits is by definition the
sum of the Laurent series (15.7).
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Similarly to power series expansions for holomorphic functions in disks,
we have Laurent series expansions for holomorphic functions in rings:

Theorem 15.9. Let f be a holomorphic function in a ring

∆R(z0) \∆r(z0) = {z ∈ C : r < |z − z0| < R}, 0 ≤ r < R ≤ +∞.

Then f has the Laurent series expansion

f(z) =
∞∑

n=−∞

cn(z − z0)n, z ∈ ∆R(z0) \∆r(z0),

where

(15.9) cn =
1

2πi

∫
∂∆t(z0)

f(z)

(z − z0)n+1
dz, r < t < R, n ∈ Z.

Proof. Considers disks

∆r′(z0), ∆R′(z0), r < r′ < R′ < R,

so that

∆R′(z0) \∆r′(z0) ⊂ U := ∆R(z0) \∆r(z0)

Then by Cauchy’s integral formula in the form of Corollary 15.2,
(15.10)

f(z) =
1

2πi

(∫
∂∆R′ (z0)

−
∫
∂∆r′ (z0)

)
f(w)dw

w − z
, z ∈ ∆R′(z0) \∆r′(z0).

We next follows the argument of the of Theorem 15.6 for each integral.
For the first integral, we consider, as before, the expansion

(15.11)
f(w)

w − z
=

f(w)

w − z0

· 1

1− z−z0
w−z0

= f(w)
∑
n≥0

(z − z0)n

(w − z0)n+1
,

which converges for

|z − z0| < |w − z0| = R′

since ∣∣∣∣ z − z0

w − z0

∣∣∣∣ =
|z − z0|
R′

< 1.

Then, as before, the Weierstrass M-test implies that∑
n≥0

f(w)(z − z0)n

(w − z0)n+1
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converges uniformly for w ∈ ∂∆R′(z0) and z ∈ ∆R′(z0) fixed, and by
the basic estimate for the integral, the sum of the integrals of summands
converges to the integral of the sum:∫

∂∆R′ (0)

∑
n≥0

f(w)(z − z0)n

(w − z0)n+1
dw =

∑
n≥0

∫
∂∆R′ (0)

f(w)(z − z0)n

(w − z0)n+1
dw,

and we obtain the expansion of the first integral in (15.10):

1

2πi

∫
∂∆R′ (0)

f(w)

w − z
dw =

∑
n≥0

cn(z − z0)n,

where

(15.12) cn =
1

2πi

∫
∂∆R′ (z0)

f(w)

(w − z0)n+1
dw.

On the other hand, for the second integral over ∂∆r′(z0), we have the
inequality

(15.13) |z − z0| > |w − z0| = r′,

hence consider the expansion

(15.14)
f(w)

w − z
= − f(w)

z − z0

· 1

1− w−z0
z−z0

= −f(w)
∑
n≥0

(w − z0)n

(z − z0)n+1
,

which converges since (15.13) implies∣∣∣∣w − z0

z − z0

∣∣∣∣ =
r′

|z − z0|
< 1.

Again, using the boundedness of f on ∂∆r′(z0) and the Weierstrass M-
test, ∫

∂∆r′ (0)

∑
n≥0

f(w)(w − z0)n

(z − z0)n+1
dw =

∑
n≥0

∫
∂∆r′ (0)

f(w)(w − z0)n

(z − z0)n+1
dw

and we obtain the expansion of the second integral in (15.10):

1

2πi

∫
∂∆r′ (0)

f(w)

w − z
dw = −

∑
n≥0

c−(n+1)(z − z0)−(n+1),

where

(15.15) c−(n+1) =
1

2πi

∫
∂∆r′ (z0)

f(w)

(w − z0)−n
dw, n = 0, 1, . . . .
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Finally, substituting both integrals into (15.10), we obtain

(15.16) f(z) =
∞∑

m=−∞

cm(z − z0)m, r′ < |z − z0| < R′,

where all coefficients satisfy

cm =
1

2πi

∫
∂∆t(z0)

f(z)

(z − z0)m+1
dz, m ∈ Z,

for all r < t < R, since these integrals are independent of t by Cauchy’s
theorem.

We conclude the proof by observing that for every

z ∈ ∆R(z0) \∆r(z0),

we can choose r < r′ < R′ < R such that r′ < |z− z0| < R′ implying the
expansion (15.16), which therefore holds for all z in the ring. �

16. Properties of power and Laurent series

For simplicity we shall consider power series centered at 0. The general
case of arbitrary center can be reduced to the center 0 by translation.

16.1. Abel’s lemma and applications.

Lemma 16.1 (Abel’s lemma). Assume that a power series

(16.1)
∞∑
n=0

cnz
n

converges for z = z0. Then

(1) the series (16.1) converges absolutely for every z with |z| < |z0|;
(2) the series (16.1) converges uniformly on every disk ∆r(0) with

r < |z0|.

Proof. Since (16.1) converges for z = z0, by the nth term test,

cnz
n
0 → 0, n→∞.

In particular, the sequence (cnz
n
0 ) is bounded, i.e. there exists M > 0

with

|cnzn0 | ≤M, n = 0, 1, . . . .

Then for |z| ≤ r < |z0|,

|cnzn| = |cnzn0 | ·
∣∣∣∣ zz0

∣∣∣∣n ≤M

(
r

|z0|

)n
.
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Since r < |z0|, the series ∑
n≥0

M

(
r

|z0|

)n
converges and (1) and (2) follow respectively from the comparison and
Weierstrass M-test. �

Corollary 16.2 (Uniform convergence of Laurent series). Let

f(z) =
∞∑

n=−∞

cnz
n, 0 ≤ r < |z| < R ≤ ∞,

be a Laurent series expansion in the ring ∆R(0)\∆r(0). Then the Laurent
series converges uniformly in every strictly smaller closed ring

∆R′(0) \∆r′(0), r < r′ < R′ < R.

Proof. Recall that the convergence of the Laurent series
∑∞

n=−∞ cnz
n

means that both positive and negative parts∑
n≥0

cnz
n,

∑
n<0

cnz
n =

∑
m>0

c−m

(
1

z

)m
.

Then Abel’s lemma, part (2), implies that the positive part converges
uniformly for |z| ≤ R′, R′ < R, and the negative part converges uniformly
for |1/z| < 1/r′, i.e. for |z| > r′. Then both positive and negative parts
converge in the smaller closed ring as desired. �

16.2. Laurent series and residues. The following result provides a
general method of calculating residues.

Theorem 16.3. Let

f(z) =
∞∑

n=−∞

cn(z − z0)n, 0 < |z − z0| < R ≤ +∞,

be a Laurent series expansion in the ring ∆R(z0)\{z0}. Then the residue
of f equals to the coefficient of (z − z0)−1:

Resz0f = c−1.

Proof. In view of the uniform convergence in every smaller ring by Corol-
lary 16.2, we can calculate the residue by integrating the Laurent series
expansion term-wise:

Resz0f =
1

2πi

∫
∂∆t(z0)

f(z)dz =
1

2πi

∑
n∈Z

∫
∂∆t(z0)

cn(z−z0)ndz, 0 < t < R.
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Each power function pn(z) = (z− z0)n for n 6= −1 has the antiderivative

Pn(z) =
(z − z0)n+1

n+ 1
,

hence each respective integral vanishes. The only remaining integral is

1

2πi

∫
∂∆t(z0)

c−1

z − z0

dz = c−1,

proving the desired formula. �

16.3. Radius of convergence.

Definition 16.4. The radius of convergence of the power series∑
n≥0

cnz
n

is given by

R := sup{|z| :
∑

cnz
n converges}, 0 ≤ R ≤ +∞.

Corollary 16.5. Let R be the radius of convergence of the power series∑
n≥0

cnz
n.

Then:

(1) the series converges absolutely for |z| < R;
(2) the series diverges for |z| > R.

Proof. Let z satisfy |z| < R. By Definition 16.4, there exists z0 such
that |z| < |z0| < R and

∑
cnz

n
0 converges. Then (1) follows from Abel’s

lemma.
Now let z satisfy |z| > R. Suppose by contradiction that the series

converges at z. Then by Abel’s lemma,
∑

n cnw
n converges for |w| < |z|.

In particular, we can find w withR < |w| < |z| where the series converges,
which contradicts Definition 16.4. �

Example 16.6. The geometric series∑
n

zn

converges for |z| < 1 and diverges for |z| ≥ 1. Hence its radius of conver-
gence is 1.
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Example 16.7. The series ∑
n

zn

n!

is convergent for all z ∈ C by the ratio test, since∣∣∣∣ zn+1

(n+ 1)!
/
zn

n!

∣∣∣∣ =
|z|
n+ 1

→ 0, n→∞.

Hence its radius of convergence is +∞.

Example 16.8. The series ∑
n

n!zn

is divergent for all z 6= 0 by the nth term test, since

|n!zn| → ∞, n→∞.
Hence its radius of convergence is 0.

16.4. Differentiation of power series.

Theorem 16.9. Let ∑
n

cnz
n

be a power series with radius of convergence R > 0. Then for |z| < R,
the sum of the series is C-differentiable with the derivative obtain by
term-wise differentiation:

(16.2)

(∑
n≥0

cnz
n

)′
=
∑
n≥1

ncnz
n−1.

Proof. We first prove that the power series of the term-wise derivatives∑
n≥1

ncnz
n−1

converges for |z| < R. For this, choose any z0 with

|z| < |z0| < R,

so that ∑
n

cnz
n
0

converges absolutely. Then

|ncnzn−1| ≤ n

|z0|

∣∣∣∣ zz0

∣∣∣∣n−1

|cnzn0 |.
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Since
n

|z0|

∣∣∣∣ zz0

∣∣∣∣n−1

→ 0, n→∞,

the series of the term-wise derivatives converges absolutely by the com-
parison test.

Next for any |z|, |z0| < r < R, we estimate the increments of powers
as

(16.3) |zn− zn0 | = |z− z0||zn−1 + zn−2z0 + . . .+ zn−1
0 | ≤ |z− z0| · nrn−1.

Then comparing their ratios with the nth term derivatives and using
(16.3), we obtain∣∣∣∣zn − zn0z − z0

− nzn−1
0

∣∣∣∣ =
∣∣zn−1 + zn−2z0 + . . .+ zzn−2

0 + zn−1
0 − nzn−1

0

∣∣
≤ |zn−1 − zn−1

0 |+ |zn−2z0 − zn−1
0 |+ . . .+ |zzn−2

0 − zn−1
0 |+ |zn−1

0 − zn−1
0 |

≤ |zn−1 − zn−1
0 |+ |z0||zn−2 − zn−2

0 |+ . . .+ |zn−2
0 ||z − z0|+ |zn−1

0 ||1− 1|
≤ |z − z0| · n(n− 1)rn−1,

and therefore

(16.4)

∣∣∣∣∣∑
n

cn
zn − zn0
z − z0

−
∑
n

cnnz
n−1
0

∣∣∣∣∣ ≤ |z − z0|
∑
n

n(n− 1)|cn|rn−1.

We have proved that the series with term-wise derivatives∑
ncnz

n−1

converges absolutely in the same disk |z| < R, hence also the series with
twice term-wise derivatives∑

n

n(n− 1)cnz
n−2 =

1

z

∑
n

n(n− 1)cnz
n−1.

Since r < R, this shows that the series∑
n

n(n− 1)cnr
n−1

converges. Then the rigth-hand side of (16.4) converges to 0 as z → z0,
hence the left-hand side does, proving the desired conclusion. �

Combining with the power series expansion for holomorphic functions,
we obtain the following important result:

Corollary 16.10. Let f be holomorphic in an open set U ⊂ C. Then
the derivative f ′ is again holomorphic in U . In particular, f is infinitely
C-differentiable.
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Proof. Since U is open, for every z0 ∈ U , there exists a disk ∆r(z0) ⊂ U .
By Theorem 15.6, f has a power series expansion

f(z) =
∑
n≥0

cn(z − z0)n, z ∈ ∆r(z0).

Then by Theorem 16.9,

f ′(z) =
∑
n≥0

ncn(z − z0)n−1,

which is another convergent power series. Applying Theorem 16.9 again,
we conclude that f ′ is holomorphic in ∆r(z0). Since z0 is arbitrary, this
shows that f ′ is holomorphic in U as desired. �

16.5. Morera’s theorem.

Theorem 16.11 (Morera). Let U ⊂ C be open and f : U → C a contin-
uous function satisfying ∫

∂T

f(z)dz = 0

for every closed triangle T ⊂ U . Then f is holomorphic in U .

Proof. Let z0 ∈ U with a disk D := ∆r(z0) ⊂ U . Then D is star-shaped
and by Lemma 12.5, the restriction f |D has an antiderivative F : D → C,
i.e. F ′ = f |D. Since F is holomorphic, it is infinitely C-differentiable by
Corollary 16.10. In particular, fD is also C-differentiable. Since the disk
is arbitrary, f is holomorphic as desired. �

Morera’s theorem can be seen as a converse of the Cauchy-Goursat
theorem. Corollary 16.10 is the last missing ingredient we need to prove
it.

16.6. Taylor’s formula. Another important consequence of Theo-
rem 16.9 on differentiation of power series is the Taylor’s formula for the
coefficients:

Corollary 16.12 (Taylor’s formula). Let

f(z) =
∑
n≥0

cn(z − z0)n, z ∈ ∆r(z0), r > 0.

be a convergent power series. Then

cn =
f (n)(z0)

n!
.

In particular, the coefficients in any power series expansion of f are
uniquely determined by f .
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Proof. By Theorem 16.9, calculating the mth derivative by term-wise
differentiation,

f (m)(z0) =
∑
n≥m

n(n− 1) . . . (n−m+ 1)cn(z − z0)n−m|z=z0 = m!cm.

�

16.7. Examples of power series expansions. We use Taylor’s for-
mula to calculate some important examples of power series expansions.

Example 16.13. The exponential function f(z) = ez is holomorphic in C
and satisfies f (n) = ez. Hence by the power series expansion ez =

∑
n cnz

n

for all z with

cn =
f (n)(0)

n!
=
ez

n!

∣∣∣∣
z=0

=
1

n!
=⇒ ez =

∑
n≥0

cnz
n =

∑
n≥0

zn

n!
.

Example 16.14. Similarly, calculating the nth derivatives of cos z and
sin z and using Taylor’s formula, we obtain their expansions

cos z =
∑
k≥0

(−1)kz2k

(2k)!
, sin z =

∑
k≥0

(−1)kz2k+1

(2k + 1)!
.

Example 16.15. Let f(z) = Log(z+ 1), where Log is the principal branch
of log z. Then f is holomorphic in U = C \ R≤−1, where ∆1(0) ⊂ U is
the maximal disk with center 0, where f has a power series expansion

f(z) =
∑

cnz
n.

Then c0 = f(0) = Log1 = 0 and differentiating we obtain

1

z + 1
=
∑
n≥1

ncnz
n−1, |z| < 1.

On the other hand,

1

z + 1
=
∑
n≥1

(−z)n−1, |z| < 1.

By Taylor’s formula, the power series coefficients are determined by the
sum of the series, hence

ncn = (−1)n−1 =⇒ cn =
(−1)n−1

n
and we obtain the power series expansion of the logarithm function

Log(1 + z) =
∑
n≥1

(−1)n−1zn

n
.
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We could have used Taylor’s formula directly by calculating all higher
order derivative of f but the present method is somewhat shorter.

16.8. Cauchy’s estimates. Cauchy’s estimates are important estimates
for the derivatives of holomorphic functions:

Theorem 16.16 (Cauchy’s estimates). Let f be holomorphic in a disk
∆R(z0). Then

|f (n)(z0)| ≤ n! sup |f |
Rn

, n = 1, 2, . . . .

Proof. By Theorem 15.6 on power series expansion,

f(z) =
∑
n≥0

cn(z − z0)n, z ∈ ∆R(z0),

where

cn =
1

2πi

∫
∂∆r(z0)

f(z)

(z − z0)n+1
dz, 0 < r < R.

Estimating the integrals, we obtain

|cn| ≤
1

2π

sup |f |
rn+1

2πr =
sup |f |
rn

.

Since r is arbitrary with 0 < r < R, taking the limit as r → R, we obtain

|cn| ≤
sup |f |
Rn

.

Now the estimate for the nth derivative follows from Taylor’s formula:

|f (n)(z0)| = |n!cn| ≤
n! sup |f |

Rn

as desired. �

16.9. Liouville’s theorem.

Theorem 16.17 (Liouville’s theorem). Let f be a holomorphic function
in C, which is also bounded. Then f = const.

Proof. Since f is bounded in C,

M := sup
z∈C
|f(z)| < +∞.

Since f is holomorphic in any disk ∆R(0), Cauchy’s estimates yield

|f (n)(0)| ≤ n! sup |f |
Rn

≤ n!M

Rn
, n = 1, 2, . . . .

Since R is arbitrary, letting R→∞ we obtain

|f (n)(0)| = 0 =⇒ f (n)(0) = 0, n = 1, 2, . . . ,
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and the conclusion follows from the power series expansion and Taylor’s
formula:

f(z) =
∑
n≥0

f (n)(0)

n!
zn = f(0).

�

Corollary 16.18 (Fundametal theorem of algebra). Let

P (z) = anz
n + . . .+ a0, an 6= 0, n > 0,

be a polynomial of a positive degree. Then P has a root in C, i.e. there
exists z ∈ C with P (z) = 0.

Proof. Assume by contradiction that P (z) 6= 0 for all z ∈ C. Then

f(z) :=
1

P (z)

is defined and holomorphic in C. Factoring out the dominant term,

|f(z)| = 1

|P (z)|
=

1

|an||z|n
1

1 + a1
anzn−1 + . . .+ a0

anzn

,

we see that
|f(z)| → 0, z →∞.

In particular, f is bounded in C \∆R(0) for some R > 0. On the other

hand, f is continuous on the compact set ∆R(0), hence is also bounded

on ∆R(0). Then f is bounded on C and therefore, by the Liouville’s
theorem, is constant. But then also P (z) = 1/f(z) is constant, which
contradicts the assumptions, proving the claim. �
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