Exercise 1
Let \(p_1, p_2, p_3, p_4 \) be distinct points of \(\mathbb{P}^2 \) with no 3 collinear.

(i) Prove that there exists unique coordinate system in which the 4 points are \((1, 0, 0), (0, 1, 0), (0, 0, 1) \) and \((1, 1, 1)\).

(ii) Find all conics passing through \(p_1, \ldots, p_4 \) and \(p_5 = (a, b, c) \).

Exercise 2
Use the parametrization of the cuspidal cubic \(C = \{y^2 = x^3\} \) to show that any polynomial vanishing on \(C \) is divisible by \(y^2 - x^3 \).

Exercise 3
Let \(C \) be the curve given by \(f(x, y) = 0 \) and \(p = (a, b) \in C \). Assume that the gradient \(\nabla f = (f_x, f_y) \) is nonzero at \((a, b) \).

(i) Show that the equation

\[
f_x(p)(x - a) + f_y(p)(y - b) = 0
\]

defines the unique tangent line to \(C \) at \(p \), i.e. the unique line \(L \) such that \(f|_L \) has a multiple root at \(p \).

(ii) Show that the tangent line can be obtained as the limit of the secant line passing through \(p \) and another point \(q \in C \) as \(q \to p \). Hint. Write an equation for the secant, similar to the tangent line equation, where the derivatives are replaced by the corresponding increment ratios.

Exercise 4
Let \(C \) be given by \(y^2 = x(x - 1)(x + 1) \).

(i) What is the projectivization \(\tilde{C} \) of \(C \), i.e. the cubic obtained in \(\mathbb{P}^2 \) by homogenization of the equation for \(C \)?

(ii) Find the point at infinity of \(\tilde{C} \).

(iii) Chosing the origin at infinity, find all points of order 2 with respect to the group law, i.e. all points \(A \in \tilde{C} \) with \(2A = A + A = 0 \). Hint. Use Exercise 3.