Course 2318 2011

\mathbf{S}	h	е	е	t	3

Due: at the end of the tutorial on Thursday of the next week

Exercise 1

Let p_1, p_2, p_3, p_4 be distinct points of \mathbb{P}^2 with no 3 collinear.

- (i) Prove that there exists unique coordinate system in which the 4 points are (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1).
- (ii) Find all conics passing through p_1, \ldots, p_4 and $p_5 = (a, b, c)$.

Exercise 2

Use the parametrization of the cuspidal cubic $C = \{y^2 = x^3\}$ to show that any polynomial vanishing on C is divisible by $y^2 - x^3$.

Exercise 3

Let C be the curve given by f(x, y) = 0 and $p = (a, b) \in C$. Assume that the gradient $\nabla f = (f_x, f_y)$ is nonzero at (a, b).

(i) Show that the equation

$$f_x(p)(x-a) + f_y(p)(y-b) = 0$$

defines the unique tangent line to C at p, i.e. the unique line L such that f|L has a multiple root at p.

(ii) Show that the tangent line can be obtained as the limit of the secant line passing through p and another point $q \in C$ as $q \to p$. Hint. Write an equation for the secant, similar to the tangent line equation, where the derivatives are replaced by the corresponding increment ratios.

Exercise 4

Let C be given by $y^2 = x(x-1)(x+1)$.

- (i) What is the projectivization \widetilde{C} of C, i.e. the cubic obtained in \mathbb{P}^2 by homogenization of the equation for C?
- (ii) Find the point at infinity of C.
- (iii) Chosing the origin at infinity, find all points of order 2 with respect to the group law, i.e. all points $A \in \tilde{C}$ with 2A = A + A = 0. Hint. Use Exercise 3.