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Sheet 3

Due: at the end of the lecture

Sheet 2, Exercise 5

Find all z, for which the following identity holds:
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Solution
We have

Z4n+2 e Z( ) 421—1z/4

n=

for |z/4] < 1, i.e. |z| < 4. Substituting in the above identity we conclude that the latter
holds for 0 < |z| < 4. On the other hand, for z = 0 both sides are not defined and for
|z| > 4, the series diverges. Hence the identity holds precisely for 0 < |z| < 4.

Sheet 2, Exercise 6

Let f(z) be any branch of logz defined on an open set. Show that f is holomorphic
and f'(z) = 1.

Solution Since any branch w = f(z) of logz is continuous and is an inverse of

z = €e", it is holomorphic and

f(Z): (Bw)/:_:

Sheet 3, Exercise 3

Evaluate the integrals:
. 1 .
@) Jioj=2 zemems 9%

Solution



The function m is holomorphic away from the singularities at 0,1, 3, of

which 0 and 1 are inside the circle |z| = 2. By the Residue Theorem,
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We use the formula
(%) Resa—) = g(a).

Then

y 27 sing .
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Solution Using the substitution z = €’

0 _ z4z7? H _ z—z ! _ dz
, cost) = ZE— sinf) = Z=—, df = =,

we obtain
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of which 0 and —2 + /3 are inside the circle |z| = 1. By the Residue Theorem,
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The function is holomorphic away from the singularities at 0 and —2 + /3,

We use the formula (*) and

9(2) _ g(a)
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coe 2
(iii) ffooo 7364_”2”%24_2 dux;

Solution



Use the extension F(z) = which satisfies

__ 2
z4—222427

lim zF(z) =0

zZ— 00
and is holomorphic away from the singularities
i21/4eﬂ:i % ,

of which 21/4e*% and —2/%¢~*% are in the upper half-plane {Imz > 0}. Then using the

Residue Theorem, we obtain
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Using (**) we have
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and hence




