Course 1214 - Introduction to group theory 2015

Sheet 5

Due: at the end of the lecture

Exercise 1

Given a binary relation R, we write $a \sim b$ whenever $(a, b) \in R$. For points (x_1, y_1) and (x_2, y_2) in the plane \mathbb{R}^2 , determine which are equivalence relations:

(i) $(x_1, y_1) \sim (x_2, y_2)$ if $x_1 = x_2$;

(ii) $(x_1, y_1) \sim (x_2, y_2)$ if $x_1 = x_2$ or $y_1 = y_2$;

(ii) $(x_1, y_1) \sim (x_2, y_2)$ if $y_1 - y_2$ is integer.

For the equivalence relations, determine equivalence classes.

Exercise 2

- (i) Prove that if a|b (a divides b) and b|c, then a|c.
- (ii) Prove that if a|b and b|a, then $a = \pm b$.

Exercise 3

(i) For each pair a, b, perform the division of a by b with remainder:

$$a = 21, b = 5, a = -17, b = 5;$$

- (ii) Prove that if m|n and $a \equiv b \mod n$, then $a \equiv b \mod m$;
- (iii) For which n is $25 \equiv 1 \mod n$?