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1. (a) Let G1, G2 be two groups. We have to show that G1 × {e2} is a normal
subgroup in G1 ×G2, i.e.

∀ (g1, g2) ∈ G1 ×G2, (g1, g2)−1 G1 × {e2} (g1, g2) = G1 × {e2} .

We have (g1, g2)−1 = (g−1
1 , g

−1
2 ) and

(g1, g2)−1 G1 × {e2} (g1, g2) = (g−1
1 G1g1) × g−1

2 {e2}g2

=G1 × {e2}.

Let us consider the first factor: G1 is closed under inversion and under
multiplication from either side, so ∀ g1 ∈ G1, we have

g−1
1 ∈ G1 ⇒ g−1

1 G1 ⊆ G1 , and G1g1 ⊆ G1 .

We also have
g−1

1 G1 ⊇ G1 , G1g1 ⊇ G1

(For the first relation, for instance, we observe that any h ∈ G1 is reached
by applying g−1

1 from the left to g1h ∈ G1.) We conclude that g−1
1 G1 = G1,

G1g1 = G1, and altogether g−1
1 G1g1 = G1.

(b) From part 1a) we know that both G itself and {e} are normal subgroups of G.
These are the largest and the smallest normal subgroup in G, respectively.
Indeed, every subgroup of G must contain at least its identity. Thus the
intersection of all normal subgroups is {e}, which is normal.

2. Recall from problem sheet 8 that for a homomorphism f : G1 → G2 of groups,
where G1 is cyclic, is determined by specifying its value on the generating ele-
ment of G1. Moreover, a group homomorphism maps the identity to the identity.
(Indeed, if G1,G2 are multiplicative, then for any a ∈ G1, f (e1) = f (a0) =
f (a)0 = e2. If G1,G2 are additive, then f (e1) = f (0 ·a) = 0 · f (a) = e2. For a map
between a multiplicative and an additive group cf. problem sheet 8, problem 2.)

(a) f : Z2 → Z4 homomorphic:

• The generationg element of Z2 is [1]. Define f on [1] by f ([1]) = 0.
Since by assumption f is a homomorphism, it follows that

f ([0]) = f ([1 + 1]) = f ([1]) + f ([1]) = [0] + [0] = [0] .

So f is well-defined, since it maps the identity of Z2 to the identity of
Z4.

• Define f by f ([1]) = 1. We have f ([0]) = f ([1+1]) = f ([1])+ f ([1]) =
[1] + [1] = [2] , [0] in Z4. So f is not well-defined.

• Define f by f ([1]) = 2. We have f ([0]) = f ([1+1]) = f ([1])+ f ([1]) =
[2] + [2] = [4] = [0] in Z4. So f is well-defined.
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• Define f by f ([1]) = [3]. We have f ([0]) = f ([1 + 1]) = f ([1]) +
f ([1]) = [3] + [3] = [6] = [2] , 0 in Z4. So f is not well-defined.

The map f ([1]) = [m] for any [m] ∈ Z4 with

m + m = 2m ≡ 0 mod 4

is well-defined.
(b) f : Z2 → Z5 homomorphic:

• Define f by f ([1]) = 0. We have f ([0]) = f ([1+1]) = f ([1])+ f ([1]) =
[0] + [0] = [0]. So f is well-defined.

• Define f by f ([1]) = 1. We have f ([0]) = f ([1+1]) = f ([1])+ f ([1]) =
[1] + [1] = [2] , [0] in Z5. So f is not well-defined.

• Define f by f ([1]) = 2. We have f ([0]) = f ([1+1]) = f ([1])+ f ([1]) =
[2] + [2] = [4] , [0] in Z5. So f is not well-defined.

• Define f by f ([1]) = [3]. We have f ([0]) = f ([1 + 1]) = f ([1]) +
f ([1]) = [3] + [3] = [6] = [1] , [0] in Z4. So f is not well-defined.

• Define f by f ([1]) = [4]. We have f ([0]) = f ([1 + 1]) = f ([1]) +
f ([1]) = [4] + [4] = [8] = [3] , [0] in Z4. So f is not well-defined.

5 is not divisible by 2, so

m + m = 2m ≡ 0 mod 5

is solved by [m] = [0] only. The only homomorphism is the trivial map.

3. Recall that the order of a group is the number of its elements. Z8 = {[0], . . . , [7]}
has order 8.

(a) Denote by [4] be the equivalence class mod 8. 〈[4]〉 = {[0], [4]} defines a
subgroup of Z8 of order two. So

Z8/〈[4]〉 = {[0], [1], [2], [3]}

has order 8 : 2 = 4 and is cyclic, generated by [1].
(b) We have

3 = 3 ≡ 3 mod 8
3 + 3 = 6 ≡ 6 mod 8

3 + 3 + 3 = 9 ≡ 1 mod 8
3 + 3 + 3 + 3 = 12 ≡ 4 mod 8

3 + 3 + 3 + 3 + 3 = 15 ≡ 7 mod 8
3 + 3 + 3 + 3 + 3 + 3 = 18 ≡ 2 mod 8

3 + 3 + 3 + 3 + 3 + 3 + 3 = 21 ≡ 5 mod 8
3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 = 24 ≡ 0 mod 8 .

By adding another copy of 3, we restart from above. We observe that all
numers between 0 and 7 occur, so that the subgroup 〈[3]〉 actually equals
Z8:

Z8/〈[3]〉 = {[0]} ,

whose order is 8 : 8 = 1. It is trivially cyclic.

More generally, when gcd(m, n) = 1 and [m] denotes the equivalence class mod
n, then 〈[m]〉 = Zn.
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