Introduction to group theory Prof. Zaitsev

Solutions to Sheet 9

leitner@stp.dias.ie

1. (a) Let G_1 , G_2 be two groups. We have to show that $G_1 \times \{e_2\}$ is a normal subgroup in $G_1 \times G_2$, i.e.

$$\forall (g_1, g_2) \in G_1 \times G_2, \quad (g_1, g_2)^{-1} G_1 \times \{e_2\} (g_1, g_2) = G_1 \times \{e_2\}.$$

We have $(g_1, g_2)^{-1} = (g_1^{-1}, g_2^{-1})$ and

$$(g_1, g_2)^{-1} G_1 \times \{e_2\} (g_1, g_2) = (g_1^{-1} G_1 g_1) \times g_2^{-1} \{e_2\} g_2$$

= $G_1 \times \{e_2\}.$

Let us consider the first factor: G_1 is closed under inversion and under multiplication from either side, so $\forall g_1 \in G_1$, we have

$$g_1^{-1} \in G_1 \implies g_1^{-1}G_1 \subseteq G_1$$
, and $G_1g_1 \subseteq G_1$.

We also have

$$g_1^{-1}G_1 \supseteq G_1 , \quad G_1g_1 \supseteq G_1$$

(For the first relation, for instance, we observe that any $h \in G_1$ is reached by applying g_1^{-1} from the left to $g_1h \in G_1$.) We conclude that $g_1^{-1}G_1 = G_1$, $G_1g_1 = G_1$, and altogether $g_1^{-1}G_1g_1 = G_1$.

- (b) From part 1a) we know that both G itself and {e} are normal subgroups of G. These are the largest and the smallest normal subgroup in G, respectively. Indeed, every subgroup of G must contain at least its identity. Thus the intersection of all normal subgroups is {e}, which is normal.
- 2. Recall from problem sheet 8 that for a homomorphism $f: G_1 \to G_2$ of groups, where G_1 is cyclic, is determined by specifying its value on the generating element of G_1 . Moreover, a group homomorphism maps the identity to the identity. (Indeed, if G_1, G_2 are multiplicative, then for any $a \in G_1$, $f(e_1) = f(a^0) =$ $f(a)^0 = e_2$. If G_1, G_2 are additive, then $f(e_1) = f(0 \cdot a) = 0 \cdot f(a) = e_2$. For a map between a multiplicative and an additive group cf. problem sheet 8, problem 2.)
 - (a) $f : \mathbb{Z}_2 \to \mathbb{Z}_4$ homomorphic:
 - The generationg element of \mathbb{Z}_2 is [1]. Define f on [1] by f([1]) = 0. Since by assumption f is a homomorphism, it follows that

$$f([0]) = f([1+1]) = f([1]) + f([1]) = [0] + [0] = [0].$$

So *f* is well-defined, since it maps the identity of \mathbb{Z}_2 to the identity of \mathbb{Z}_4 .

- Define f by f([1]) = 1. We have f([0]) = f([1+1]) = f([1])+f([1]) = [1] + [1] = [2] ≠ [0] in Z₄. So f is not well-defined.
- Define f by f([1]) = 2. We have f([0]) = f([1+1]) = f([1])+f([1]) = [2] + [2] = [4] = [0] in ℤ₄. So f is well-defined.

• Define f by f([1]) = [3]. We have $f([0]) = f([1 + 1]) = f([1]) + f([1]) = [3] + [3] = [6] = [2] \neq 0$ in \mathbb{Z}_4 . So f is **not** well-defined.

The map f([1]) = [m] for any $[m] \in \mathbb{Z}_4$ with

$$m + m = 2m \equiv 0 \mod 4$$

is well-defined.

- (b) $f : \mathbb{Z}_2 \to \mathbb{Z}_5$ homomorphic:
 - Define f by f([1]) = 0. We have f([0]) = f([1+1]) = f([1])+f([1]) = [0] + [0] = [0]. So f is well-defined.
 - Define f by f([1]) = 1. We have f([0]) = f([1+1]) = f([1])+f([1]) = [1] + [1] = [2] ≠ [0] in Z₅. So f is not well-defined.
 - Define f by f([1]) = 2. We have f([0]) = f([1+1]) = f([1])+f([1]) = [2] + [2] = [4] ≠ [0] in Z₅. So f is not well-defined.
 - Define f by f([1]) = [3]. We have $f([0]) = f([1 + 1]) = f([1]) + f([1]) = [3] + [3] = [6] = [1] \neq [0]$ in \mathbb{Z}_4 . So f is **not** well-defined.
 - Define f by f([1]) = [4]. We have $f([0]) = f([1 + 1]) = f([1]) + f([1]) = [4] + [4] = [8] = [3] \neq [0]$ in \mathbb{Z}_4 . So f is **not** well-defined.

5 is not divisible by 2, so

$$m + m = 2m \equiv 0 \mod 5$$

is solved by [m] = [0] only. The only homomorphism is the trivial map.

- 3. Recall that the order of a group is the number of its elements. ℤ₈ = {[0], ..., [7]} has order 8.
 - (a) Denote by [4] be the equivalence class mod 8. ([4]) = {[0], [4]} defines a subgroup of Z₈ of order two. So

$$\mathbb{Z}_8/\langle [4] \rangle = \{ [0], [1], [2], [3] \}$$

has order 8: 2 = 4 and is cyclic, generated by [1].

(b) We have

 $3 \equiv 3 \equiv 3 \mod 8$ $3 + 3 \equiv 6 \equiv 6 \mod 8$ $3 + 3 + 3 \equiv 9 \equiv 1 \mod 8$ $3 + 3 + 3 = 3 \equiv 12 \equiv 4 \mod 8$ $3 + 3 + 3 + 3 = 12 \equiv 4 \mod 8$ $3 + 3 + 3 + 3 + 3 = 15 \equiv 7 \mod 8$ $3 + 3 + 3 + 3 + 3 + 3 = 18 \equiv 2 \mod 8$ $3 + 3 + 3 + 3 + 3 + 3 + 3 = 21 \equiv 5 \mod 8$ $3 + 3 + 3 + 3 + 3 + 3 + 3 = 24 \equiv 0 \mod 8.$

By adding another copy of 3, we restart from above. We observe that all numers between 0 and 7 occur, so that the subgroup $\langle [3] \rangle$ actually equals \mathbb{Z}_8 :

$$\mathbb{Z}_8/\langle [3]\rangle = \{[0]\},\$$

whose order is 8:8 = 1. It is trivially cyclic.

More generally, when gcd(m, n) = 1 and [m] denotes the equivalence class mod n, then $\langle [m] \rangle = \mathbb{Z}_n$.