Introduction to group theory Prof. Zaitsev

Solutions to Sheet 7

leitner@stp.dias.ie

1. (a) As a set, $\mathbb{Z}_3 = \{[0], [1], [2]\}$ which forms a group under addition.

+	[0]	[1]	[2]
[0]	[0]	[1]	[2]
[1]	[1]	[2]	[0]
[2]	[2]	[0]	[1]

(b) \mathbb{Z}_6^* has been introduced in class: The set $\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}$ forms a group under addition. Define

$$\mathbb{Z}_6^* := \{ [m] \in \mathbb{Z}_6 \setminus \{ [0] \} | \gcd(m, 6) = 1 \} = \{ [1], [5] \}.$$

 \mathbb{Z}_6^* is the set of units in \mathbb{Z}_6 . It is a multiplicative group:

•	[1]	[5]
[1]	[1]	[5]
[5]	[5]	[1]

(c) As a set, Z₂ × Z₂ = {([0], [0]), ([0], [1]), ([1], [0]), ([1], [1])}, where each copy Z₂ forms a group under addition. This yields the following Cayley table for Z₂ × Z₂:

+	([0],[0])	([0],[1])	([1],[0])	([1],[1])
([0],[0])	([0],[0])	([0],[1])	([1],[0])	([1],[1])
([0],[1])	([0],[1])	([0],[0])	([1],[1])	([1],[0])
([1],[0])	([1],[0])	([1],[1])	([0],[0])	([0],[1])
([1],[1])	([1],[1])	([1],[0])	([0],[1])	([0],[0])

- (d) Z₃ is cyclic, generated additively by 1: We have [1], and [1] + [1] = [1+1] = [2] and [1] + [1] + [1] = [1+1+1] = [0] = e, so all elements are captured.
 - \mathbb{Z}_6^* is cyclic, generated multiplicatively by [5]: We have [5], and $[5]^2 = [1] = e$.
 - Z₂ × Z₂ is not cyclic: There is no generator. (All diagonal elements of the Cayley table for Z₂ × Z₂ are equal to ([0], [0]). It follows that for any element different from ([0], [0]) in this group, the repeated addition yields only two out of the four group elements.)
- 2. Let *G* be a group. Since *G* has *finite* order (=number of elements),

 $\forall a \in G \quad \exists m \in \mathbb{N}^+ \quad \text{s.t.} \quad a^m = e \,.$

(Otherwise by successively increasing the power we obtain infinitely many different elements that all lie in G, contradiction to the order being finite.) Let m be the smallest positive integer with this property. Then

$$\langle a \rangle \subseteq_{\text{subgroup}} G, \quad \text{ord} \langle a \rangle = m$$

For every subgroup $H \subseteq G$, we know that ord H | ord G, so we must have

$$m | \text{ord } G |$$

Since ord G = p is *prime*, it follows that m = 1, or m = p:

• $m = 1 \implies a = e$, and

$$\langle a \rangle = \langle e \rangle$$

is the trivial proper subgroup. (Since $p \neq 1$, $\exists b \in G \setminus \{e\}$, so repeat the argument for *b*.)

• $m = p \implies a^p = 1$, and

$$\langle a \rangle = \{e, a, a^2, \dots, a^{p-1}\} \cong G$$

(same number of elements). Since also $\langle a \rangle \subseteq G$, we conclude $\langle a \rangle = G$.

We have shown that G is generated by one element $a \neq e$, so G is cyclic.

- 3. Subgroups:
 - (a) ord $\mathbb{Z}_3 = 3$ is prime, so the only subgroups of \mathbb{Z}_3 are $\langle e \rangle$ and \mathbb{Z}_3 itself.
 - (b) ord $\mathbb{Z}_6^* = 2$ is prime, so the only subgroups of \mathbb{Z}_6^* are $\langle e \rangle$ and \mathbb{Z}_6^* itself.
 - (c) We have ord $\mathbb{Z}_2 \times \mathbb{Z}_2 = 4$, and

so apart from the two trivial subgroups $\langle ([0], [0]) \rangle$ and $\mathbb{Z}_2 \times \mathbb{Z}_2$ of order 1 and 4, respectively, there is a subgroup of order 2. Actually there are 3 of them, which are all cyclic and given by

$$H_1 := \langle ([1], [1]) \rangle, \quad H_2 := \langle ([0], [1]) \rangle, \quad H_3 := \langle ([1], [0]) \rangle.$$

(Note that we have already remarked in problem 1d) that either of them contains $e = \langle ([0], [0]) \rangle$ and has order 2.)