Course 1214 - Introduction to group theory 2013

Sheet 5

Due: at the end of the lecture

Exercise 1

Use the Euclidean algorithm to compute the greatest common divisor:

- (i) gcd(101, 33)
- (ii) gcd(56, 126)
- (iii) gcd(25, 255).

Express each greatest common divisor as integer linear combination of the two given integers.

Exercise 2

Use the unique prime factorization to prove:

- (i) gcd(ac, bc) = c gcd(a, b) for all integers a, b, c.
- (ii) If gcd(a, c) = gcd(b, c) = 1, then gcd(ab, c) = 1.

Exercise 3

- (i) Determine cosets in \mathbb{Z}_8 of the subgroup $\langle [4] \rangle$ generated by [4].
- (ii) Determine left and right cosets in S_3 of the subgroup H generated by the cycle (23).
- (iii) If $H \subset G$ is a subgroup, prove that gH = H if and only if $g \in H$.