Introduction to group theory Prof. Zaitsev

Solutions to Sheet 6

leitner@stp.dias.ie

1. Euclidean algorithm

(a)

$$gcd(1001, 33) = gcd(1001 - \underbrace{30 \cdot 33}_{=990}, 33) = gcd(11, 33) = 11$$
.
11 = 1001 - 30 · 33.

(b)

$$gcd(56, 126) = gcd(56, 126 - \underbrace{2 \cdot 56}_{=112}) = \underbrace{(56, 126)}_{=4 \cdot 14}, 14 = 14.$$
$$14 = -2 \cdot 56 + 126$$

(c)

 $gcd(234, 2341) = gcd(234, 2341 - \underbrace{10 \cdot 234}_{=2340}) = gcd(234, 1) = 1.$ $1 = -10 \cdot 234 + 2341$

2. Let \mathfrak{P} be the set of prime numbers. Suppose

$$a = \prod_{\substack{p \in \mathfrak{P} \\ \text{almost all } n(p)=0}} p^{n(p)}$$
$$b = \prod_{\substack{p \in \mathfrak{P} \\ \text{almost all } m(p)=0}} p^{m(p)}$$
$$c = \prod_{\substack{p \in \mathfrak{P} \\ \text{almost all } k(p)=0}} p^{k(p)}$$

(a) For *a*, *b* as above, we have

$$gcd(a,b) = \prod_{\substack{p \in \mathfrak{P} \\ almost all n(p), m(p)=0}} p^{\min(n(p), m(p))} .$$

Now for *a*, *b*, *c* as above,

$$ac = \prod_{\substack{p \in \mathfrak{P} \\ \text{almost all } n(p), k(p)=0}} p^{n(p)+k(p)}$$
$$gcd(ac, bc) = \prod_{\substack{p \in \mathfrak{P} \\ \text{almost all } n(p), m(p)=0}} p^{\min(n(p)+k(p), m(p)+k(p))}$$

On the other hand,

$$c \operatorname{gcd}(a, b) = \prod_{\substack{p \in \mathfrak{P} \\ \text{almost all } k(p)=0}} p^{k(p)} \prod_{\substack{p \in \mathfrak{P} \\ \text{almost all } n(p), m(p)=0}} p^{\min(n(p), m(p))}$$

It suffices to show that (abbreviating notations) for k = k(p), n = n(p), m = m(p), we have

Claim 1.

$$\min(n+k, m+k) = \min(n, m) + k.$$

Proof. We have

$$n+k \le m+k \quad \Leftrightarrow \quad n \le m$$

Suppose w.l.o.g. $n \le m$, i.e. $\min(n, m) = n$. Then

$$\min(n+k, m+k) = n+k = \min(n, m) + k$$

(b) Let

$$a = p_1 \dots p_n$$
, $b = q_1, \dots, q_m$, $c = r_1 \dots, r_k$

where for $1 \le i \le n$, $1 \le j \le m$, $1 \le \ell \le k$, we have $p_i, q_j, r_\ell \in \mathfrak{P}$.

Suppose gcd(a, c) = gcd(p₁...p_n, r₁...r_k) = 1. Then no prime r_j equals any of the primes p_i. (For suppose ∃ pair (i, j) s.t. p_i = r_j. Then

$$gcd(a, c) = p_i gcd(p_1 \dots p_{i-1} p_{i+1} \dots p_n, r_1 \dots r_{j-1} r_{j+1} \dots r_k)$$

by part 2a. But gcd(a, c) = 1 so we must have

$$p_i = \pm 1$$
 and $gcd(p_i^{-1}a, r_j^{-1}c) = \pm 1$.

Contradiction, since ± 1 is not a prime number.)

- Suppose $gcd(b, c) = gcd(q_1 \dots q_m, r_1 \dots r_k) = 1$. Then no prime r_j equals any of the primes q_i .
- $gcd(ab, c) = gcd(p_1 \dots p_n q_1 \dots q_m, r_1 \dots r_k) = 1$ since no prime r_j equals any of the primes p_i , or any of the primes q_i .
- 3. (a) The set

$$\mathbb{Z}_8 = \mathbb{Z}/8\mathbb{Z} = \{[0], [1], [2], [3], [4], [5], [6], [7]\}$$

is a cyclic group w.r.t. +, generated by [1]. Let $H := \langle [4] \rangle \subset \mathbb{Z}_8$. As a set,

$$H = \{[0], [4]\}.$$

A left coset of *H* in \mathbb{Z}_8 is the set $g + H = \{g + h | h \in H\}$ for some $g \in \mathbb{Z}_8$. We have

 $\mathbb{Z}_{8} + [0] = \mathbb{Z}_{8}$ [0] + [4] = [4] [1] + [4] = [5] [2] + [4] = [6] [3] + [4] = [7] [4] + [4] = [8] = [0] [5] + [4] = [9] = [1] [6] + [4] = [10] = [2] [7] + [4] = [11] = [3]

Addition is commutative, so there is no need to set up a second list for the right cosets: left and right cosets are equal. All cosets are

 $[0] + H = \{[0], [4]\} = [4] + H = H$ $[1] + H = \{[1], [5]\} = [5] + H$ $[2] + H = \{[2], [6]\} = [6] + H$ $[3] + H = \{[3], [7]\} = [7] + H.$

Note: Different cosets have no common element. The identity is contained in the coset *H*.

(b) The set

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

(endowed with the composition \circ) is the group of permutations of three elements. Let $H := \langle (1 \ 2) \rangle \subset S_3$. As a set,

 $H = \{(1), (1\ 2)\}.$

Though this is not made explicit, the point of the exercise is to list actually *all* left and all right cosets (since it turns out that there are only three for either side).

A *left coset* of H in S₃ is the set g ∘ H = {g ∘ h|h ∈ H} for some g ∈ S₃.
We have

 $S_{3}(1) = S_{3}$ (1)(1 2) = (1 2) (1 2)(1 2) = (1 2)² = (1) (1 3)(1 2) = (1 2 3) (2 3)(1 2) = (1 3 2) (1 2 3)(1 2) = (1 3) (1 3 2)(1 2) = (2 3),

(cf. sheet 4, problem 2). Thus the *left cosets* of H in S_3 are

 $(1)H = \{(1), (12)\} = (12)H = H$ (13)H = {(13), (123)} = (123)H (23)H = {(23), (132)} = (132)H. • A right coset of H in S_3 is the set $H \circ g = \{h \circ g | h \in H\}$ for some $g \in S_3$. We have

 $(1)S_3 = S_3$ $(1 \ 2)(1) = (1 \ 2)$ $(1 \ 2)(1 \ 2) = (1 \ 2)^2 = (1)$ $(1 \ 2)(1 \ 3) = (1 \ 3 \ 2)$ $(1 \ 2)(2 \ 3) = (1 \ 2 \ 3)$ $(1 \ 2)(1 \ 2 \ 3) = (2 \ 3)$ $(1 \ 2)(1 \ 3 \ 2) = (1 \ 3).$

Thus the *right cosets* of H in S_3 are

$$\begin{split} H(1) &= \{(1), (1\ 2)\} = H(1\ 2) = H \\ H(1\ 3) &= \{(1\ 3), (1\ 3\ 2)\} = H(1\ 3\ 2) \\ H(2\ 3) &= \{(2\ 3), (1\ 2\ 3)\} = H(1\ 2\ 3) \;. \end{split}$$

Note: Left and right cosets of the same element $g \in S_3$ are in general different sets.

- (c) Let $H \subseteq G$ be a subgoup (in particular a group itself).
 - Suppose g ∈ H. Then gH ⊆ H since H is closed under multiplication. We also have gH ⊇ H (every element is reached by the multiplication with g): Given any h' ∈ H, we have gh = h' for h = g⁻¹h' ∈ H:

$$gh = g(g^{-1}h') = (gg^{-1})h' = eh' = h'$$
.

We have shown that for $g \in H$, we have gH = H.

• Inversely, suppose gH = H. Choosing $e \in H$ yields ge = g, so $g \in H$. This completes the proof.