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1. Euclidean algorithm

(a)

gcd(1001, 33) = gcd(1001 − 30 · 33︸ ︷︷ ︸
=990

, 33) = gcd(11, 33) = 11 .

11 = 1001 − 30 · 33 .

(b)

gcd(56, 126) = gcd(56, 126 − 2 · 56︸︷︷︸
=112

) = ( 56︸︷︷︸
=4·14

, 14) = 14 .

14 = − 2 · 56 + 126

(c)

gcd(234, 2341) = gcd(234, 2341 − 10 · 234︸   ︷︷   ︸
=2340

) = gcd(234, 1) = 1 .

1 = − 10 · 234 + 2341

2. Let P be the set of prime numbers. Suppose

a =
∏
p∈P

almost all n(p)=0

pn(p)

b =
∏
p∈P

almost all m(p)=0

pm(p)

c =
∏
p∈P

almost all k(p)=0

pk(p)

(a) For a, b as above, we have

gcd(a, b) =
∏
p∈P

almost all n(p),m(p)=0

pmin(n(p),m(p)) .

Now for a, b, c as above,

ac =
∏
p∈P

almost all n(p),k(p)=0

pn(p)+k(p)

gcd(ac, bc) =
∏
p∈P

almost all n(p),m(p),k(p)=0

pmin(n(p)+k(p),m(p)+k(p))
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On the other hand,

c gcd(a, b) =
∏
p∈P

almost all k(p)=0

pk(p)
∏
p∈P

almost all n(p),m(p)=0

pmin(n(p),m(p))

It suffices to show that (abbreviating notations) for k = k(p), n = n(p),
m = m(p), we have

Claim 1.
min(n + k,m + k) = min(n,m) + k .

Proof. We have
n + k ≤ m + k ⇔ n ≤ m

Suppose w.l.o.g. n ≤ m, i.e. min(n,m) = n. Then

min(n + k,m + k) = n + k = min(n,m) + k .

�

(b) Let
a = p1 . . . pn , b = q1, . . . , qm , c = r1 . . . , rk ,

where for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ ` ≤ k, we have pi, q j, r` ∈ P.

• Suppose gcd(a, c) = gcd(p1 . . . pn, r1 . . . rk) = 1. Then no prime r j

equals any of the primes pi.
(For suppose ∃ pair (i, j) s.t. pi = r j. Then

gcd(a, c) = pi gcd(p1 . . . pi−1 pi+1 . . . pn, r1 . . . r j−1r j+1 . . . rk)

by part 2a. But gcd(a, c) = 1 so we must have

pi = ±1 and gcd(p−1
i a, r−1

j c) = ±1 .

Contradiction, since ±1 is not a prime number.)
• Suppose gcd(b, c) = gcd(q1 . . . qm, r1 . . . rk) = 1. Then no prime r j

equals any of the primes qi.
• gcd(ab, c) = gcd(p1 . . . pnq1 . . . qm, r1 . . . rk) = 1 since no prime r j

equals any of the primes pi, or any of the primes qi.

3. (a) The set
Z8 = Z/8Z = {[0], [1], [2], [3], [4], [5], [6], [7]}

is a cyclic group w.r.t. +, generated by [1]. Let H := 〈[4]〉 ⊂ Z8. As a set,

H = {[0], [4]} .

2



A left coset of H in Z8 is the set g + H = {g + h|h ∈ H} for some g ∈ Z8.
We have

Z8 + [0] = Z8

[0] + [4] = [4]
[1] + [4] = [5]
[2] + [4] = [6]
[3] + [4] = [7]
[4] + [4] = [8] = [0]
[5] + [4] = [9] = [1]
[6] + [4] = [10] = [2]
[7] + [4] = [11] = [3] .

Addition is commutative, so there is no need to set up a second list for the
right cosets: left and right cosets are equal. All cosets are

[0] + H = {[0], [4]} = [4] + H = H

[1] + H = {[1], [5]} = [5] + H

[2] + H = {[2], [6]} = [6] + H

[3] + H = {[3], [7]} = [7] + H .

Note: Different cosets have no common element. The identity is contained
in the coset H.

(b) The set
S 3 = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}

(endowed with the composition ◦) is the group of permutations of three
elements. Let H := 〈(1 2)〉 ⊂ S 3. As a set,

H = {(1), (1 2)} .

Though this is not made explicit, the point of the exercise is to list actually
all left and all right cosets (since it turns out that there are only three for
either side).
• A left coset of H in S 3 is the set g◦H = {g◦h|h ∈ H} for some g ∈ S 3.

We have

S 3(1) = S 3

(1)(1 2) = (1 2)

(1 2)(1 2) = (1 2)2 = (1)
(1 3)(1 2) = (1 2 3)
(2 3)(1 2) = (1 3 2)

(1 2 3)(1 2) = (1 3)
(1 3 2)(1 2) = (2 3) ,

(cf. sheet 4, problem 2). Thus the left cosets of H in S 3 are

(1)H = {(1), (1 2)} = (1 2)H = H

(1 3)H = {(1 3), (1 2 3)} = (1 2 3)H
(2 3)H = {(2 3), (1 3 2)} = (1 3 2)H .
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• A right coset of H in S 3 is the set H ◦ g = {h ◦ g|h ∈ H} for some
g ∈ S 3. We have

(1)S 3 = S 3

(1 2)(1) = (1 2)

(1 2)(1 2) = (1 2)2 = (1)
(1 2)(1 3) = (1 3 2)
(1 2)(2 3) = (1 2 3)

(1 2)(1 2 3) = (2 3)
(1 2)(1 3 2) = (1 3) .

Thus the right cosets of H in S 3 are

H(1) = {(1), (1 2)} = H(1 2) = H

H(1 3) = {(1 3), (1 3 2)} = H(1 3 2)
H(2 3) = {(2 3), (1 2 3)} = H(1 2 3) .

Note: Left and right cosets of the same element g ∈ S 3 are in general
different sets.

(c) Let H ⊆ G be a subgoup (in particular a group itself).

• Suppose g ∈ H. Then gH ⊆ H since H is closed under multiplication.
We also have gH ⊇ H (every element is reached by the multiplication
with g): Given any h′ ∈ H, we have gh = h′ for h = g−1h′ ∈ H:

gh = g(g−1h′) = (gg−1)h′ = eh′ = h′ .

We have shown that for g ∈ H, we have gH = H.
• Inversely, suppose gH = H. Choosing e ∈ H yields ge = g, so g ∈ H.

This completes the proof.
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