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1. Equivalence relation: We must check that ∼ is reflexive, symmetric and transi-
tive.

(a) true: We have y = y; y1 = y2 ⇒ y2 = y1; if y1 = y2 and y2 = y3 then
y1 = y3.

(b) not true.
Explanation: Transitivity does not hold. We give an example. Suppose
(x1, y1) ∼ (x2, y2) because x1 = x2, while y1 , y2. Suppose moreover
(x2, y2) ∼ (x3, y3) because y2 = y3, while x2 , x3. Then (x2, y2) / (x3, y3)
because x1 = x2 , x3, and at the same time y1 , y2 = y3.

(c) true: x− x = 0 is an integer. When y1−y2 ∈ Z then y2−y1 = −(y1−y2) ∈ Z.
Suppose x1−x2 ∈ Z and x2−x3 ∈ Z. Then x1−x3 = (x1−x2)+(x2−x3) ∈ Z.

The question does not make precise which and how many equivalence classes
we are to determine. For brevity, we shall give one example for each. An answer
assigning a specific real number to any of the variables occurring with a star is
correct as well.

(a) An equivalence class is [(x, y∗)]∼ = {(x, y) ∈ R2| y = y∗}, where y∗ ∈ R is
fixed.

(b) An equivalence class is [(x∗, y∗)]∼ = {(x, y) ∈ R2| x = x∗} ∪ {(x, y) ∈ R2| y =
y∗}, where x∗, y∗ ∈ R are fixed.

(c) An equivalence class is [(x∗, y)]∼ = {(x, y) ∈ R2| x − x∗ ∈ Z}, where x∗ ∈ R
is fixed.

2. (a) Suppose a|b (i.e. ∃ n ∈ Z s.t. an = b) and b|c (∃ m ∈ Z s.t. bm = c). Then

c = bm = (an)m = a(nm) ,

where nm ∈ Z. Thus a|c.

(b) Since a|b, ∃n ∈ Z s.t. an = b. On the other hand, b|a so ∃m ∈ Z s.t. bm = a.
So

a = bm = (an)m = a(nm)

whence nm = 1. Since both n,m ∈ Z, we must have n = m = −1 or
n = m = 1. Thus a = ±b.

3. (a)

a : b = 19 : 5 = (15 + 4) : 5 = 3 +
4
5

·b
⇒ a = 3 · b + 4 .

a : b = (−7) : 5 = (−5 − 2) : 5 = −1 −
2
5

·b
⇒ a = −b − 2 .
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There is a mathematical convention to choose for the remainder the same
sign as for the divisor b. (This should be mentioned in your lecture notes.)
With this convention, the answer for the second pair (a, b) = (−7, 5) reads

a : b = (−7) : 5 = (−10 + 3) : 5 = −2 +
3
5

·b
⇒ a = −2b + 3 .

Note that the absolute value of the remainder is larger than in the first an-
swer.

(b) Since m|n, ∃ k ∈ Z s.t. mk = n. Now

a ≡ b mod n :⇔ a − b ∈ nZ

(Here x ∈ nZ means that ∃ ` ∈ Z s.t. x = n`.) We have to show that a ≡ b
mod m. But

a − b ∈ nZ = (mk)Z ⊆ mZ .

(The statement is that if a − b is an integer multiple of n = mk then it is in
particular an integer multiple of m, since k ∈ Z.) This shows that a−b ∈ mZ
and thus a ≡ b mod m.

(c) Since 25 = 4 + 21, we have

25 = 4 mod 21 ,

so by the preceding part of the problem, since 21 = 3 · 7, we also have

25 = 4 mod 3 , 25 = 4 mod 7 .

Since 3, 7 are prime, the argument does not apply again, and the procedure
stops here.
Note: The above mentioned mathematical convention for the division with
remainder applies: We have

25 ≡ 4 mod n ⇔ n|(25 − 4) ⇔ ∃ k ∈ Z s.t. 25 = k · n + 4 .

Only non-negative n is admissible since since the remainder has positive
sign (4 > 0).
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