Course 1214 - Introduction to group theory 2013

Sheet 3

Due: at the end of the lecture

Exercise 1

Prove that in any group

- (i) $(xy)^{-1} = y^{-1}x^{-1}$;
- (ii) identity e is the only solution of the equation $x^2 = x$.
- (iii) Is e always the only solution of $x^3 = x$? Prove or give a counterexample.

Exercise 2

For
$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5 \end{pmatrix}$$
 and $b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$:

- (i) compute ab and a^{-1} ;
- (ii) solve the equation ax = b;
- (iii) write b as product of transpositions and determine its sign;

Exercise 3

Which groups are cyclic:

- (i) the symmetry group S_2 ;
- (ii) the subgroup $n\mathbb{Z} \subset \mathbb{Z}$;
- (iii) the additive group \mathbb{Q} ;
- (iv) the group of all rotations of \mathbb{R}^2 .
- (v) the group of all matrices of the form $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$, where $a \in \mathbb{Z}$.