ex1214-2-solution

March 15, 2015

- 1. The identity element is the element *e* such that e * n = n * e = n for all $n \in \mathbb{Q}$.
 - (a) There is identity. Explanation:

$$e * n = 2en \stackrel{!}{=} n \quad \Leftrightarrow \quad e = \frac{1}{2}, \quad \text{or} \quad n = 0$$

 $e = \frac{1}{2}$ works for all $n \in \mathbb{Q}$.

(b) There is an identity. Explanation:

$$e * n = e + n + 1 = n \quad \Leftrightarrow \quad e = -1$$

(c) There is no identity. Explanation:

$$e * n = \frac{e - n}{2} \stackrel{!}{=} n \quad \Leftrightarrow \quad e = 3n.$$

e depends on the element to which it is being applied.

(d) There is no identity. Explanation:

$$e * n = 11 \stackrel{!}{=} n \quad \Leftrightarrow \quad n = 11.$$

Not all numbers in \mathbb{Q} are equal to 11. So the condition cannot be satisfied for all *n*, irrespective of the choice of *e*.

- 2. For $x, y \in \{a, b, c\}$, we have $e \cdot x = x = x \cdot e$, so for instance $(e \cdot x) \cdot y = x \cdot y = e \cdot (x \cdot y)$.
- 3. We need to check closure w.r.t. the group operation and existence of an inverse (in particular the existence of an identity).
 - (a) (S, \cdot) with $S = \{-1, 1\}$ is a group. Explanation: $(\pm 1) \cdot (\pm 1) = 1 \in S$, and $(\pm 1)(\mp 1) = -1 \in S$. So the set $\{-1, 1\}$ is closed under multiplication. Moreover, for either sign, ± 1 equals its own inverse (since 1 is the identity).
 - (b) (S, +) with $S = \{-1, 0, 1\}$ is not a group. Explanation: For example, $1+1 = 2 \notin S$.
 - (c) (S, \cdot) with $S = \mathbb{Z}^*$ is not a group. Explanation: For example, 3 has no inverse in S (1 being the identity).
 - (d) (S, +) with $S = 5\mathbb{Z}$ is a group. Explanation: Whenever $x, y \in \mathbb{Z}$, we have

$$5x + 5y = 5(x + y)$$

in \mathbb{Z} . Since $x + y \in \mathbb{Z}$, we have $5(x + y) \in S$, so *S* is closed under +. The equation also shows that $5x \in S$ has inverse 5*y* with y = -x (the identity being 0).

- (e) (S, \cdot) with $S = 5\mathbb{Z}$ is not a group. Explanation: S has no multiplictive identity.
- (f) (S, -) with $S = \mathbb{Z}$ is not a group, associativity does not hold.
- (g) (S, \cdot) with $S = 2^{\mathbb{Z}}$ is a group. Explanation: For $n, m \in \mathbb{Z}$, we have

$$2^n \cdot 2^m = 2^{n+m}$$

in \mathbb{Z} . Since $m + n \in \mathbb{Z}$, $2^{n+m} \in 2^{\mathbb{Z}}$, so *S* is closed under \cdot . The equation also shows that $2^n \in S$ has inverse 2^m with m = -n (the identity being 1).