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1. Sets

The set S is defined when for every element a it is known whether a belongs to S, written a ∈ S.
S is a subset of T if for every x ∈ S, one has x ∈ T . If S ⊂ T and T ⊂ R, then S ⊂ R.

1.1. Set operations. For sets A,B (usually subsets in a larger set) the union A∪B, intersection
A ∩B, and difference A \B are defined by

A ∪B = {x : a ∈ A or a ∈ B},

A ∩B = {x : a ∈ A and a ∈ B},
A \B = {x : a ∈ A and a 6∈ B}.

They satisfy the following basic relations:

(A ∩B) ∩ C = A ∩ (B ∩ C), (A ∪B) ∪ C = A ∪ (B ∪ C),

(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C), (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C),

(A ∩B) \ C = (A \ C) ∩ (B \ C), (A ∪B) \ C = (A \ C) ∪ (B \ C),

A \ (B ∪ C) = (A ∪ C) \ (B ∪ C), (A ∩ C) \B = (A ∩ C) \ (B ∩ C).

Also consider the Cartesian product A×B, which is the set of all ordered pairs (a, b) with a ∈ A,
b ∈ B.

1.2. Basic number sets. Natural numbers N (which we assume to contain 0 as a matter of
convention), integers Z, rational numbers Q, real numbers R, complex numbers C, quaternions H.
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2. Maps

Maps or mappings are defined between two sets S and T :

f : S → T,

where S is the domain or source and T is the codomain or target of f . For any subsets A ⊂ S,B ⊂ T
we have the image

f(A) := {f(x) : x ∈ A}
and the preimage

f−1(B) := {x ∈ S : f(x) ∈ B}.

Definition 2.1. A map f : S → T is injective if f(x) = f(x′) implies x = x′ for any x, x′ ∈ S. A
map f : S → T is surjective if for every y ∈ T there exists x ∈ S with f(x) = y, or, equivalently
f(S) = T . The map f is bijective whenever it is both injective and surjective.

2.1. Compostion of maps. For maps f : S → T and g : T → R their composition g◦f is defined
by

(g ◦ f)(x) = g(f(x)).

Definition 2.2. The inverse of f : S → T is any map f−1 : T → S satisfying (1) and (2), where

(1) f−1(f(x)) = x for all x ∈ S (equivalently f−1 ◦ f = idS);
(2) f(f−1(y)) = y for all y ∈ T (equivalently f ◦ f−1 = idT ).

If (1) holds, f−1 is called a left inverse, if (2) holds, it is called a right inverse.

It inverse exists, it is necessarily unique (special case of the uniqueness of the inverse for abstract
groups). Note that right and left inverses are not unique in general.

Example 2.3. The map f : {0} → {0, 1}, f(0) = 0, is the simplest example of a map with left but
not right inverse. The map f : {0, 1} → {0}, f(0) = f(1) = 0, is the simplest example of a map
with right but not left inverse.

Proposition 2.4. A map f : S → T has inverse if and only if it is bijective.

3. Binary operations

A binary operation on a set S is any map ∗ : S×S → S, (a, b) 7→ a ∗ b. A binary operation may
or may not be associative and commutative.

Composition of maps is always associative but not commutative in general. Note that composi-
tion is a binary operation in the special case of composing self-maps of a given set but associativity

(h ◦ g) ◦ f = h ◦ (g ◦ f)

holds in full generality, i.e for any triple of maps

f : A→ B, g : B → C, h : C → D.
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4. Groups

A group is a set G with binary operation ∗ such that

(A1) ∗ is associative;
(A2) there exists an identity (or unit) element e with e ∗ x = x ∗ e = x for every x ∈ G;
(A3) every x ∈ G has inverse x−1 such that x−1 ∗ x = x ∗ x−1 = e.

Both identity and unit terminologies are used for e. However, one has to be careful not to
confuse e with a unit in ring (any invertible element under multiplication), and not to confuse e
with the identity map of the set into itself.

In a group every element b can be divided by another element a on the right or on the left:

Lemma 4.1. If G is a group, for every a, b ∈ G, the equations

ax = b, ya = b

have the unique solutions x = a−1b, y = ba−1 respectively.

Definition 4.2 (Semi-groups and monoids). G is called sem-group if only (A1) holds, and monoid
if (A1) and (A2) hold.

In the sequel we shall drop the ∗, i.e. write ab instead of a ∗ b.

Proposition 4.3. The identity and inverses are unique.

Proof. Assume e and e′ are two identities, i.e. satisfy

ex = xe = x, e′y = ye′ = y.

Then for x = e′ and y = e we have e′ = ee′ = e. Assume now that x−1 and x−11 are two inverses
of x, i.e.

x−1x = xx−1 = e, x−11 x = xx−11 .

Then multiplying x−1x = e by x−11 on the right and multiplying xx−11 = e by x−1 on the left, we
obtain x−11 = x−1xx−11 = x−1 as desired. �

If G is finite, the number of its elements is called the order of G, denoted by |G|.

4.1. Powers of elements. For every element g in a group G, we set g0 = e, and define its positive
powers inductively by

gn+1 := ggn,

and the negative powers by taking the inverse

g−n := (gn)−1.

Then it can be checked that

gm+n = gngm

for any m,n ∈ Z.
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4.2. Cayley table. The Cayley table for a binary operation ∗ on a set S is the table with elements
of S in rows and columns, and for each a, b ∈ S, the cell in the intersection of the row of a and
the column of b has the result of operation a ∗ b. The Cayley table contains complete information
about the binary operation.

5. Subgroups

Definition 5.1. A subset H in a group G is a subgroup if it is

(1) closed under the group operation, i.e. for all a, b ∈ H one has ab ∈ H;
(2) H forms a group with respect to the restriction of the operation of G.

As direct consequence of group axioms, both G and H have identity elements. It is, however,
not immediately clear that both identities are the same, which is part of the following lemma.

Lemma 5.2. If H ⊂ G is a subgroup, both identities in H and G must coincide and for every
h ∈ H, its inverses in G and H also must coincide.

Proof. Let e1 be the identity in H, i.e. e1h = he1 = h for all h ∈ H. Then for h = e1, we have
e1e1 = e1. Multiplying by the inverse e−11 (in G) on the right or left, we get e1 = e, where e is the
identity in G, proving the first statement.

Now, since both H and G have the same identity e, the inverse h−1 of h ∈ H in H satisfies
h−1h = hh−1 = e. But the inverse h−11 of h in G has the same properties. Thus we have two
inverses in G that must be equal by the uniqueness. This proves the second statement. �

Proposition 5.3. A subset H ⊂ G is a subgroup if and only if

(1) H is closed under the group operation;
(2) H 6= ∅;
(3) for every h ∈ H, its inverse h−1 (in G) is also in H.

Proof. If H ⊂ G is a subgroup, it is closed under the group operation proving (1) and contains
the identity, which coincides with the identity e in G by Lemma 5.2, proving (2). Then again by
the same lemma, for every h ∈ H, its inverse in H coincides with its inverse h−1 in G, therefore
h−1 ∈ H proving (3).

Vice versa, assuming (1), (2), (3), H is closed by (1). Since it is nonempty by (2), we can take
some h ∈ H, then h−1 ∈ H by (3) and hence e = hh−1 ∈ H since H is closed. Finally (3) implies
that every element in H has inverse there. Thus H is a subgroup. �

5.1. Generators. A natural source of subgroups those generated by some elements. A subgroup
H ⊂ G is generated by a set of elements A ⊂ G is the intersection of all subgroups of G containing
A. The latter is always a subgroups in view of the the following lemma:

Lemma 5.4. Let G be any group. The intersection of any family (Hα)α∈A of subgroups Hα ⊂ G
is a subgroup of G.
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Proof. Denote by H the intersection of (Hα)α∈A. Then for any a, b ∈ H, we have a, b ∈ Hα for
every α. Since Hα is subgroup, ab ∈ Hα for every α, hence ab ∈ H. That proves that H is closed
under the group operation.

Since each Hα contains the identity e, H also does and is therefore nonempty. Finally, for every
a ∈ H, we have a ∈ Hα implying a−1 ∈ Hα since Hα is a subgroup. Since α is arbitrary, this shows
a−1 ∈ H.

The proof is completed by using Proposition 5.3. �

The following gives a complete description of the generated subgroup by a subset.

Proposition 5.5. Let G be a group and S ⊂ G any subset. Then the subgroup 〈S〉 ⊂ G generated
by S consists of all words x1 . . . xn (of any length n), where for every j, either xj ∈ S or x−1j ∈ S.

Proof. Let H be the set of all words as in the proposition. Then it is clearly closed under the
operation, is nonempty (contains the empty word equal to the idenity), and contains inverses of
its elements, since

(x1 . . . xn)−1 = x−1n . . . x−11

is another word. Hence H is a subgroup by Proposition 5.3.
On the other hand, any subgroup containing S must also contain all words as above, hence H

is the minimal such subgroup. �

5.2. Cyclic groups. A group is cyclic if it is generated by a single element. (Z,+) is cyclic but
(Q,+) is not.

As corollary of Proposition 5.5, we obtain:

Corollary 5.6. The subgroup generated by a single element g ∈ G consists of all integer powers
gn for n ∈ Z.

6. Permutation groups

A permutation of a set S is any bijective self-map of S. All permutations of a set S form the
permutation group of S with respect to composition. In case S = {1, . . . , n}, its permutation group
is also called symmetric group and is denoted by Sn.

Lemma 6.1. The number of elements in Sn is |Sn| = n!.

Proof. Counting the number of all possible self-bijections σ of {1, . . . , n}, we see that there are n
choices for σ(1), after which there are (n− 1) remaining choices for σ(2), then (n− 2) remaining
choices for σ(3), and similarly, for every m, there will be (n−m+ 1) choices for σ(m). Combining
all the choices, we obtain n! possible self-bijections σ. �

Proposition 6.2. Every permutation σ can be written as product of transpositions, i.e. permuta-
tions exchanging two elements. In other words, the set of all transpositions generates Sn.
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Proof. We argue by induction on n, where the statement is obvious for n = 1, 2. Every permutation
σ of {1, . . . , n} can be composed with the transposition σ0 exchanging σ(n) and n. The composition
σ0σ preserves n and hence corresponds to a permutation of {1, . . . , n− 1}, which by induction is
a product of transpositions: σ0σ = τ1 . . . τm. Since σ−10 = σ0, we obtain

σ = σ0τ1 . . . τm,

completing the induction step. �

6.1. Sign of permutation and alternating group. Consider permutations acting on variables
x1, . . . , xn, and therefore on the polynomial function

∆(x1, . . . , xn) :=
∏
j<k

(xj − xk),

transforming it into

∆σ(x1, . . . , xn) := ∆(xσ(1), . . . , xσ(n)).

If σ is a transposition exchanging two fixed numbers i < j, then

∆(x1, . . . , xn) = (xi − xj)×∏
k<i

(xk − xi)(xk − xj) ·
∏
i<k<j

(xi − xk)(xk − xj) ·
∏
k>j

(xi − xk)(xj − xk)×

∏
k<l,k,l/∈{i,j}

(xk − xl).

Then exchanging xi and xj we see that the first factor changes the sign, the first, third and forth
products do not change, whereas in the second product both factors change sign. Consequently
the whole product changes the sign and we obtain ∆σ = −∆.

Since every permutation σ is a product of transpositions, it either transforms ∆ into itself or
into −∆, depending on the parity of the number of transpositions involved. That is, ∆σ = ∆ if
∆ is a product of even number of transpositions, and ∆σ = −∆ if ∆ is a product of odd number
of transpositions. Note that since ∆σ depends only on σ but not on the way σ is represented as
product of transpositions, the number of transpositions involved is either always even or always
odd.

If ∆σ = ∆ we say that the sign (or signature) sgn(σ) = 1 and call σ even. Otherwise, when
∆σ = −∆, we call sgn(σ) = −1 and σ is called odd. That is, for all σ ∈ Sn we have the identity

∆σ = sgn(σ)∆.

Writing σ and τ as products of k and l transpositions, we conclude that στ can be written as
product of k + l transpositions. Hence sgn is multiplicative, i.e.

sgn(στ) = sgn(σ) sgn(τ),

and the set of all even permutations forms the important alternating subgroup An ⊂ Sn.
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6.2. Cycle decompositions. For any distinct set of integers 1 ≤ a1, . . . , am ≤ n, the cycle
(a1 . . . am) is the permutation σ ∈ Sn which “cycles” (i.e. permutes in cyclic order) the ak’s, i.e.
sends ak into ak+1 for 1 ≤ k < m and am into a1. Every permutation can be uniquely written as
composition of pairwise disjoint cycles.

Every m-cycle is a product of (m− 1) transpositions:

σ = (a1 . . . am) = (a1a2)(a2a3) . . . (am−1am).

In particular, it follows that its sign is sgn(σ) = (−1)m−1.

Example 6.3. The alternating subgroup A3 ⊂ S3 consists of the identity and all 3-cycles (a1a2a3).
The alternating subgroup A4 ⊂ S4 consists of all 3-cycles (a1a2a3) and all products of disjoint
2-cycles (a1a2)(a3a4).

7. Matrix groups

For every n = 1, 2, . . ., the sets of all n × n matrices over Z, Q, R, C form monoids under
multiplication.

7.1. General linear groups. Their subsets of invertible matrices form with respect to matrix
multiplication the general linear groups

GLn(Z) ⊂ GLn(Q) ⊂ GLn(R) ⊂ GLn(C),

sometimes also written as GL(n,Q) etc. Recall that a matrix A is invertible over Q, R, C (or, more
generally, over any field) if and only if detA 6= 0. In case of Z (which is not a field), a matrix over
it is invertible if and only if its determinant is invertible in Z, i.e. either 1 or −1.

7.2. Special linear groups. Important subgroups of general linear groups are special linear
groups

SLn(Z) ⊂ SLn(Q) ⊂ SLn(R) ⊂ SLn(C),

consisting of corresponding matrices with determinant 1.

7.3. Orthogonal and unitary groups. Further important subgroups of general linear groups
are orthogonal groups

On(Z) ⊂ On(Q) ⊂ On(R) ⊂ On(C),

consisting of corresponding matrices A with AAt = id, where At is the transpose matrix, and the
unitary group

Un = Un(C)

consisting of all complex matrices A with AĀt = id, where Ā is the complex conjugate. Note that
the unitary group is only interesting to consider over C, where Ā 6= A, which is why it is usually
simply written as Un or U(n).

Recall that orthogonal matrices are precisely those preserving the standard euclidean scalar
product

(x, y) = x1y1 + . . .+ xnyn,
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and unitary matrices are those preserving the standard hermitian scalar product

〈x, y〉 = x1ȳ1 + . . .+ xnȳn.

7.4. Special orthogonal and unitary groups. Intersecting orthogonal and unitary groups with
special linear groups one obtains special orthogonal groups and special unitary group

SOn(Z) ⊂ SOn(Q) ⊂ SOn(R) ⊂ SOn(C), SUn,

SOn(K) := On(K) ∩ SLn(K), SUn := Un ∩ SLn(C)

8. Binary and equivalence relations

A binary relation on a subset S is any subset R ⊂ S × S, i.e. subset of pairs of elements of S.
We write a ∼ b whenever (a, b) ∈ R and call ∼ the (binary) relation. A (binary) relation ∼ is an
equivalence relation if it is reflexive, symmetric and transitive.

Let ∼ be an equivalence relation on S. For every a ∈ S, its equivalence class is the subset of
all x ∈ S with x ∼ a. For every equivalence relation on S there is unique partition of S into
equivalence classes, i.e. decomposition of S as union of pairwise disjoint equivalence classes.

9. Integer division, greatest common divisor and congruences

9.1. Integer division with remainder. Given m,n ∈ Z with n > 0, there exist unique q, r ∈ Z
satisfying

m = nq + r, 0 ≤ r < n.

Indeed, it suffices to take q = [m/n], the integral part of m/n, i.e. the maximal integer not greater
than m/n, and set r := m− nq.

If r = 0, i.e. n = mq, m is said to divide n or to be a divisor of n, and n is said to be divisible
by m.

9.2. Application: additive sugroups of Z.

Theorem 9.1. Additive subgroups H ⊂ Z are precisely those given by H = nZ for n = 0, 1, . . ..

Proof. For H 6= {0}, take n > 0 to be the minimal positive element of H. Then any other h ∈ H
can be divided by n with remainder r, which also must belong to H and is therefore 0. Thus
H = nZ. �

9.3. Greatest common divisor. The greatest common divisor gcd(m,n) of two positive integers
m,n is the largest positive integer k which divides both m and n. If gcd(m,n) = 1, the integers
m and n are said to be relatively prime or coprime.

Theorem 9.2. The greatest common divisor k of m and n can be written as integer linear com-
bination k = am+ bn, a, b ∈ Z.

The proof is by the Euclidean algorithm.
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9.4. Unique prime factorization. Recall that an integer p 6= ±1 is prime if its only divisors
are ±1,±p.

Lemma 9.3. If a prime p divides mn, then p divides either m or n.

Proof. Suppose p divides mn but not m. Then gcd(p,m) = 1 and by Theorem 9.2,

1 = ap+ bm.

Multiplying by n we obtain n = anp + bnm. Since p divides bnm and anp, it also divides n as
desired. �

Theorem 9.4 (Unique prime factorization). Every integer n ≥ 2 can be expressed as a product
of (positive) prime numbers (not necessarily distinct),

n = p1 · · · pr,
uniquely determined up to a permutation.

Proof. We show existence of prime decomposition by induction on n. It clearly holds for n = 2.
Now given any n, it is either prime, in which case n is the only prime factor itself, or n = pq for
some integers 1 < p, q < n. By induction, both p and q are decomposable as product of primes,
and hence n also is.

We now show the uniqueness again by induction on n. It clearly holds for n = 2. Suppose n has
two prime decompositions:

n = p1 · · · pr = q1 · · · qs.
Then the prime p1 divides q1 · · · qs and using Lemma 9.3 repeatedly, we see that p1 must divide
one of qj, say q1. But since q1 is also prime, p1 = q1 and hence

n′ = p2 · · · pr = q2 · · · qs.
Since n′ < n, it has unique prime decomposition by induction and therefore n does. �

9.5. Congruences modulo n. Two integers m, k are congruent modulo n if m − k is divisible
by k, written

m ≡ k mod n.

It follows from integer division with remainder that every m is congruent to precisely one integer
between 0 and n− 1.

One verifies that congruence is an equivalence relation, whose equivalence classes are called
congruence classes [m]. Denote by Zn the set of all congruence classes modulo n. Then the addition
and multiplication of integers induce well-defined addition and multiplication on Zn. Then (Zn,+)
becomes a group, and (Zn, ·) a monoid.

9.6. The group of units of a monoid. By definition, if S is a monoid, S∗ is the subset of all
invertible elements (also called units), i.e. elements having inverses. Since (ab)−1 = b−1a−1 and
(a−1)−1 = a, S∗ is closed under the operation of S and is a group with respect to this operation,
called the group of units of the monoid.
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9.7. Multiplicative group Z∗n.

Lemma 9.5. A congruence class [m] ∈ Zn is invertible if and only if gcd(m,n) = 1 (i.e. m and
n are coprime).

Proof. If [m] is invertible and [l] is its inverse, we have ml = 1 mod n, i.e. ml + nk = 1 for some
integer k, implying gcd(m,n) = 1.

Vice versa, gcd(m,n) = 1 implies 1 = am + bn for some a, b ∈ Z by Theorem 9.2, i.e. am = 1
mod n, and hence [m] is invertible in Zn. �

Thus the group of units Z∗n consists of all [m] such that m is coprime with n. More specially, if
n = p is prime, any m is either divisible by p or coprime with it. Hence we obtain:

Lemma 9.6. If p is prime, Z∗p = Zp \ {[0]}.

10. Cosets, orders of elements, and Largrange’s Theorem

10.1. Cosets. Cosets are generalizations of congruence classes. Given a group G and a subgroup
H ⊂ G, its left and right cosets are respectively subsets gH and Hg for any g ∈ G.

Example 10.1. For the subgroup H = nZ ⊂ Z, its both left and right cosets are congruence classes
gH = Hg = [g].

Also in general cosets are equivalence classes where a ∼ b whenever aH = bH for right cosets
and whenever Ha = Hb for left cosets.

10.2. Group and element orders. The order |G| of a group G is the (possibly infinite) number
of elements. For every element g ∈ G, define its order to be the order of the subgroup generated
by g.

Example 10.2. The symmetric group Sn has order n!. Its alternating subgroup An ⊂ Sn of all
even permutations has two cosets An and σAn with equal number of elements, where σ is any odd
permutation. Hence |An| = n!/2.

Theorem 10.3. The subgroup generated by g consists precisely of all powers gk. Let n ≥ 0 be
either the minimum n with gn = e, or ∞ if gk 6= e for all k ≥ 1. Then gk = gm if and only if
k ≡ m mod n (or k = m for n =∞). The order of g equals n.

10.3. Langrange’s Theorem.

Theorem 10.4. If G is a finite group and H ⊂ G, the order of H divides the order of G.

Corollary 10.5. In a finite group G, the order of every element divides the order of G. Conse-
quently g|G| = e for every g ∈ G.
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10.4. Fermat’s little theorem.

Theorem 10.6. If p is prime and x 6≡ 0 mod p, then xp−1 ≡ 1 mod p.

Proof. By Lemma 9.6, |Z∗p| = p− 1 and the theorem follows from Corollary 10.5. �

An equivalent version is:

Theorem 10.7. If p is prime, then xp ≡ x mod p for all x.

11. Homomorphisms

11.1. Group homomorphisms, isomorphisms, and their kernels. A map f : G → G′ be-
tween two groups is a (group) homomorphism if it sends products into products, i.e. f(ab) =
f(a)f(b). It follows that f(e) = e and f(a−1) = (f(a))−1. Image f(G) ⊂ G′ of homomorphism is
always a subgroup of G′.

Isomorphism is a bijective homomorphism.
The kernel kerf of a homomorphism f : G→ G′ is the preimage of the identity e ∈ G′.

Theorem 11.1. The kernel H := ker f of a group homomorphism is a subgroup of G such that

(11.1) gHg−1 ⊂ H

for every g ∈ G.

11.2. Normal subgroups. A subgroup H ⊂ G satisfying (11.1) for all g ∈ G is called normal
subgroup, written H / G.

11.3. Quotient group modulo normal subgroup. Let H / G be a normal subgroup.

Lemma 11.2. Then gH = Hg for all g ∈ G, i.e. right and left cosets are the same.

Theorem 11.3. The group operation on G induces a well-defined group operation on the set of
all right (and hence left) H-cosets.

The group of all right (or left) H-cosets in G is called the quotient group G/H.

11.4. First isomorphism theorem.

Theorem 11.4. Let f : G → G′ be any homomorphism and let H := ker f . Then f induces the
group isomorphism

f̃ : G/H → f(G), gH 7→ f(g).

Proof. By definition of ker f , the map f̃ is well-defined, i.e. f(g) depends only on the class gH.

Since f is homomorphism, so is f̃ . It is clearly surjective and also injective: if f̃(gH) = f̃(g′H),

then f(g−1g′) = e implying g−1g′ ∈ H, i.e. g′H ⊂ gH and gH ⊂ g′H by symmetry. Hence f̃ is an
isomorphism. �
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11.5. Chinese Remainder Theorem.

Theorem 11.5 (Chinese Remainder Theorem). Let n1, . . . , nk be nonzero integers that are pair-
wise coprime (i.e. no two have common divisor other than ±1). Then for any integers l1, . . . , lk
there exists an integer m satisfying

m ≡ lj mod nj, j = 1, . . . , k.

Proof. Consider the direct product G := Zn1 × · · · × Znk
and the homomorphism

f : Z→ G, m 7→ ([m]n1 , . . . , [m]nk
).

We need to prove that f is surjective. Consider unique prime decompositions of m and each
nj. Since nj are pairwise coprime, no prime can appear in factorization of more than one nj. If
m ∈ ker f , i.e. it is divisible by each nj, each factor p appearing with power pk in factorization of
any nj must divide m. Hence the factorization of m contains those factors and hence m is divisible
by the product of all such pk, i.e. by the product

n := n1 · · ·nk.
It follows that ker f = nZ and by the first isomorphism theorem, the image subgroup f(Z) is
isomorphic to the quotient Z/ ker f = Z/nZ = Zn. Then |f(Z)| = n = |G| implying surjectiviity
of f as desired. �

12. Group actions on sets

12.1. Definitions and elementary properties.

Definition 12.1. An action of group G on a set S is a group homomorphism f from G into the
group Sym(S) of all permutations (bijective self-maps) of S. If f is injective, the action is called
faithful.

The common notation is

(12.1) g · x = f(g)(x), g ∈ G, x ∈ S.

Proposition 12.2. Given an action f : G→ Sym(S), we have

(1) e · x = x (where e is the identity in G);
(2) (gh) · x = g · (h · x).

Vice versa, any map G× S → S, (g, x) 7→ g · x, satisfying (1) and (2), defines an action f : G→
Sym(S) such that (12.1) holds.

Definition 12.3. The stabilizer of x ∈ S is defined by

Gx := {g ∈ G : g · x = x}.
The orbit of x ∈ S is defined by

G · x := {g · x : g ∈ G}.

Lemma 12.4. For any action, we have:
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(1) The stabilizer Gx is always a subgroup of G.
(2) Different orbits do not intersect. In fact, being in the same orbit defines an equivalence

relation on S with orbits being equivalence classes.

In the following, for any subgroup H ⊂ G, denote by G/H the set of all left H-cosets gH ⊂ G.

Example 12.5. For any subgroup H ⊂ G, G naturally acts on the set G/H of left H-cosets. The
action is defined by

G×G/H → G/H, (g, g1H) 7→ g · g1H := gg1H.

For every class x = g0H ∈ G/H, its stabilizer is

Gx = {g : g · x = x} = {g : gg0H = g0H} = {g : gg0 ∈ g0H} = {g : g ∈ g0Hg−10 } = g0Hg
−1
0 .

In particular, if g0 = e, we have Gx = H, i.e. any subgroup H is realized as a stabilizer of some
group action of G.

Theorem 12.6. For each x ∈ S, the map f : [g] 7→ g · x induces a bijection G/Gx → G · x. In
particular, if G is finite, any orbit G · x is finite and we have

|Gx| = |G|
|Gx|

.

Proof. The map f is well-defined: if g1 ∈ [g] ∈ G/Gx is another representative, we have g1 = gh,
h ∈ Gx, and hence

g1 · x = gh · x = g · (h · x) = g · x,

since Gx is the stabilizer of x.
Further, f is injective: if g ◦ x = g1 ◦ x, then g−1g1 · x = x implying g−1g1 ∈ Gx, i.e. [g1] = [g]

in G/Gx.
Finally, f is clearly surjective by definition of the orbit G ·x. This shows that f is bijective. �

13. Cayley’s theorem

Theorem 13.1 (Cayley’s theorem). Every group is isomorphic to a subgroup of the permutation
group Sym(S) for some set S.

Proof. Consider the action of G on itself by left multiplication:

g · x = gx, g, x ∈ G.

This is clearly an action and the resulting homomorphism f : G → Sym(G), g 7→ (x 7→ gx) has
zero kernel. Hence by First Isomorphism Theorem, f is an isomorphism onto its image, which is
a subgroup of the permutation group of G as desired. �
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14. Sylow’s 1st theorem

By Lagrange’s theorem, the order of any subgroup H ⊂ G divides the order of |G|. On the
other hand, in general, for a divisor d of |G|, there may be no subgroups H ⊂ G of order d.

Example 14.1. Let G = A4 be the alternating group of all even permutations of order 4, whose
order is |S4|/2 = 4!/2 = 12. It consists of all permutations having disjoint cycle decompositions
either (a1a2)(b1b2) or (a1a2a3). What are possible subgroups H ⊂ G?

We clearly have subgroups H = {e, (a1a2)(b1b2)} of order 2 (generated by (a1a2)(b1b2)) and
H = {e, (a1a2a3), (a1a3a2)} of order 3 (generated by (a1a2a3)). Clearly all subgroups of order 2
and 3 are of this kind.

Assume now H has order ≥ 4. If H contains an element h0 = (a1a2a3) and h1 = (b1b2)(c1c2),
then switching bi with ci, if necessary, we may assume b1, b2 ∈ {a1, a2, a3}. Further, cycling a1, a2, a3
and switching b1, b2, if necessary, we may assume h1 = (a1a2)(a3a4). Then H also contains

h2 := h0h1h
−1
0 = (a2a3)(a1a4), h3 := h20h1h

−2
0 = (a1a3)(a2a4),

i.e. all possible products of 2 disjoint cycles.
Next H contains h1h0h

−1
1 = (a2a1a4), and hence also (a2a1a4)

−1 = (a1a2a4). Analogously, H
contains h2h0h

−1
2 = (a4a3a2) and h3h0h

−1
3 = (a3a4a1) and its inverses, hence all 3-cyles. Summa-

rizing, we must have H = A2.
The remaining possibility are that H only has 3-cycles or only products of 2-cycles.
In the first case, H has two 3-cycles (a1a2a3) and (b1b2b3) with {a1, a2, a3} 6= {b1, b2, b3}, then

we may assume that a2, a3 ∈ {b1, b2, b3} and set a4 := b3. In that case we have (a1a2a3)(a2a3a4) =
(a1a2)(a3a4) ∈ H. Now the above argument shows H = A2.

Finally, the last possibility is H having only products of 2-cycles, of which we must have at
least two that we can write as h1 = (a1a2)(a3a4) and h2 = (a1a3)(a2a4). Then H also contains
h1h2 = (a1a4)(a2a3), in which case

H = {e, (12)(34), (13)(24), (14)(23)},

which is the only subgroup of order 4.
Thus A4 has subgroups of orders 1, 2, 3, 4 and 12. However, it does not have any subgroup of

order 6 which is a divisor of |A4|.
Writing the prime decomposition |A2| = 22 · 3, we find subgroups of orders 1, 2, 22, 3, and 22 · 3,

i.e. we have subgroups of orders pk whenever p is prime and pk divides 12, but not necessarily of
an order pk11 p

k2
2 with p1, p2 different primes.

Definition 14.2. If p is a prime, any subgroup H ⊂ G of order |H| = pk for some k is called a
p-subgroup. By Lagrange’s theorem, pk divides the order |G|. If k is maximal such that pk divides
|G|, any H of order |H| = pk is called Sylow p-subgroup.

Theorem 14.3. If G is finite group whose order is divisible by pk, where p is prime, then G has
a subgroup of order pk.
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For k maximal with pk dividing |G|, we obtain the Sylow’s 1st theorem: G has a Sylow p-
subgroup for every prime p dividing |G|.

Proof (Wielandt, 1959). Let S be the set of all pk-element subsets of G. We can write |G| = plm
such that m is not divisible by p. Then S consists of

(14.1)

(
mpl

pk

)
=
plm(plm− 1) · · · (plm− pk + 1)

pk(pk − 1) · · · 1

elements. The latter number is equal to the product of m and the fractions

(14.2)
plm− j
pk − j

, 0 < j < pk.

For each j, let ps be the highest power of p dividing plm− j. Then s < k, since otherwise j would
be divisible by pk which contradicts 0 < j < pk. Now since ps divides pkm, it also divides j and
hence pk − j. Vice versa, if ps divides pk − j, we must have s < k and hence ps divides j implying
that it divides pkm − j. Summarizing, we obtain that powers of p in the factorization of both
numerator and denominator in (14.2) are the same and hence the right-hand side in (14.1) is not
divisible by pl−k+1. Consequently, also the number |S| of elements of S is not divisible by pl−k+1.

Consider the action of G on S given by

g · {g1, . . . , gpk} := {gg1, . . . , ggpk}.

Since S is a disjoint union of G-orbits and the number of elements of S is not divisible by pl−k+1,
there exists at least one orbit G · x with

x = {g1, . . . , gpk}

such that the number of elements |G · x| is not divisible by pl−k+1. By Theorem 12.6,

|Gx| = |G|/|G · x| = mpl/|G · x|

is divisible by pk. On the other hand, if g ∈ Gx, then

{gg1, . . . , ggpk} = {g1, . . . , gpk}

and hence gg1 = gj for some j = 1, . . . , pk, i.e. g = g−11 gj, implying |Gx| ≤ pk. Hence |Gx| = pk.
Since the stabilizer Gx is always a subgroup of G, we obtain the desired conclusion. �

Applying Theorem 14.3 with k = 1, we obtain:

Corollary 14.4 (Cauchy’s Theorem, 1845). If G is a finite group whose order is divisible by a
prime p, then G contains an element of order p.
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15. Classification of finite abelian groups

Recall that for every groups G1, . . . , Gr, their direct product G1 × . . . × Gr is defined as their
cartesian product with component-wise multiplication, i.e.

(g1, . . . , gr)(h1, . . . , hr) := (g1h1, . . . , grhr),

or, when all groups are abelian, in the additive notation,

(g1, . . . , gr) + (h1, . . . , hr) := (g1 + h1, . . . , gr + hr).

For abelian groups, their direct product is also called direct sum written as

G1 ⊕ . . .⊕Gr.

Lemma 15.1. If G is abelian group and H1, H2 ⊂ G are finite subgroups with gcd(|H1|, |H2|) = 1,
then the map

f : H1 ⊕H2 → H, (h1, h2) 7→ h1 + h2

is an injective homomorphism.

Proof. If h = (h1, h2) ∈ ker f , then h1 = −h2 and hence h1 ∈ H1∩H2. By Corollary 10.5, the order
of h1 divides both |H1| and |H2| implying h1 = 0 and then h2 = 0. Hence ker f = {0} proving
injectivity of f . �

Corollary 15.2. For every decomposition n = n1n2 with gcd(n1, n2) = 1, the cyclic group Zn is
isomorphic to Zn1 ⊕ Zn2.

By induction, Lemma 15.1 can be generalized as follows:

Lemma 15.3. If G is abelian group and Hj ⊂ G, j = 1, . . . , r, are finite subgroups with |Hj|
pairwise coprime, then the map

f : H1 ⊕ . . .⊕Hr → H, (h1, . . . , hr) 7→ h1 + . . .+ hr

is an injective homomorphism.

Proof. The proof is by induction on r. The case r = 2 is treated in Lemma 15.1. Now given any
r, set

H ′r−1 := H1 + . . .+Hr−1 ⊂ H.

Since the map

H1 ⊕ . . .⊕Hr−1 → H, (h1, . . . , hr−1) 7→ h1 + . . .+ hr−1

is injective by the induction assumption, |H ′r−1| = |H1| · · · |Hr−1| and hence |H ′r−1| and |Hr| are
coprime and we can use again Lemma 15.1 for H ′r−1 and Hr to obtain the desired conclusion. �

Corollary 15.4. Let n = pk11 · · · pkrr be the prime decomposition of n with pi 6= pj and kj > 0.
Then Zn is isomorphic to Z

p
k1
1
⊕ . . .⊕ Zpkrr .
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Lemma 15.5. Let G be an abelian group generated by elements x1, . . . , xk. For any c1, . . . , ck ∈
N≥0 with gcd(c1, . . . , ck) = 1, there exist generators y1, . . . , yk of G (i.e. G = 〈y1, . . . , yk〉) such
that y1 = c1x1 + . . .+ ckxk.

Proof. We argue by induction on s := c1 + . . . + ck. The lemma is clear for s = 1 (with yj’s
obtained by permutation of the xj’s). Otherwise for s > 1, after possibly exchanging x1, x2, we
may assume c1 ≥ c2 > 0. Now apply the induction for the set of generators x1, x2 + x1, x3, . . . , xk
and the numbers c1 − c2, c2, c3 . . . , ck ∈ N≥0. Since

gcd(c1 − c2, c2, c3 . . . , ck) = 1

and
(c1 − c2) + c2 + c3 + . . .+ ck < c1 + c2 + c3 + . . .+ ck = s,

by induction, there exist generators y1, . . . , yk, such that

y1 = (c1 − c2)x1 + c2(x1 + x2) + c3x3 + . . .+ ckxk = c1x1 + c2x2 + c3x3 + . . .+ ckxk

as desired. �

Definition 15.6. A subset {x1, . . . , xk} of an abelian group G is called a basis if it generates G
and for m1, . . . ,mk ∈ Z, one has

(15.1) m1x1 + . . .+mkxk = 0 =⇒ m1x1 = . . . = mkxk = 0.

Note that a single nonzero generator x (if it exists), forms a single-element basis {x} as (15.1)
is trivial for k = 1.

Examples 15.7. (1) For G = Z, the possible bases are one-element sets {1} and {−1}. Indeed,
a basis cannot have 0 and for any nonzero integers x1 6= x2, there exists the relation
x2x1 − x1x2 = 0 violating (15.1).

(2) For G = Zn, each one-element set {[z]} ⊂ Zn, where gcd(z, n) = 1, forms a basis. Indeed,
since any such z is invertible in Z∗n by Lemma 9.5, it generates Zn and hence {[z]} is a
basis.

(3) For G = Z6, the set B := {[2], [3]} is a basis. Indeed, [1] = [3]− [2] is a generator, hence B
generates G. Further, an identity m1[2]+m2[3] = [0] in G implies that 2m1+3m2 is divisible
by 6 and hence m1 and m2 are divisible by 3 and 2 respectively, i.e. m1[2] = m2[3] = [0] in
G, proving (15.1). In particular, the number of elements in a basis is not independent of
the choice of a basis, compare with Corollary 15.2.

Theorem 15.8. Every finitely generated abelian group G has a basis.

Proof (from Lecture Notes by J.S.Milne, http://www.jmilne.org/math/CourseNotes/GT.pdf). We
argue by induction on the number of generators of G. If G is generated by one element, it is cyclic
and the statement is clear.

Assume now that {x1, . . . , xk} is a set of generators with minimal possible k > 1. Among such
sets of generators, choose one with x1 having the smallest possible order |x1|. We claim that

(15.2) 〈x1〉 ∩ 〈x2, . . . , xk〉 = {0}.
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Indeed, suppose that the above intersection contains a nonzero element m1x1 6= 0, and hence we
have a relation

m1x1 +m2x2 + . . .+mkxk = 0.

After possibly changing the sign of some of the xj, we may assume that m1, . . . ,mk ∈ N≥0. Also,
replacing m1 with its remainder modulo |x1| (the order of x1), we may assume m1 < |x1|.

Let d := gcd(m1, . . . ,mk) and ci := mi/d. Then gcd(c1, . . . , ck) = 1 and by Lemma 15.5, there
exists a set of generators {y1, . . . , yk} with y1 = c1x1 + . . .+ ckxk. Then

dy1 = m1x1 +m2x2 + . . .+mkxk = 0,

hence y1 has order at most d ≤ m1 < |x1|. This is a contradiction with our choice of generators
with the smallest possible |x1|, proving the claim (15.2).

Since the subgroup 〈x2, . . . , xk〉 ⊂ G has fewer generators, it has a basis {y1, . . . , ys} by induc-
tion. Then in view of (15.2), {x1, y1, . . . , ys} is a basis of G. �

Corollary 15.9. Every finitely generated group G is isomorphic to a direct sum of finitely many
cyclic subgroups of G.

Proof. By Theorem 15.8, G has a basis {x1, . . . , xk}. Then the map

(m1, . . . ,mk) 7→ m1x1 + . . .+mkxk

defines a surjective homomorphism f from

Zn1 ⊕ · · · ⊕ Znk
, nj := |xj|,

onto G, where we use the convention
Z∞ := Z

for the case some of the orders |xj| are infinite. Furthermore, it follows from the definition of basis
that the kernel of f is zero. Now the statement follows from the First Isomorphism Theorem. �

Definition 15.10. The torsion subgroup GT in an abelian group G is the subgroup consisting of
all elements of finite order.

It is easy to see that GT is indeed a subgroup of G and in any decomposition of G as direct
sum of cyclic subgroups, GT equals the sum of all those subgroups that are finite.

Theorem 15.11. Let n = pk11 · · · pkrr be the prime decompositions with pi 6= pj and kj > 0. Then
every abelian group of order n is isomorphic to a direct sum of finitely many cyclic groups Zptj
with t ≤ kj.

Proof. Let G be abelian group of order n. By Corollary 15.9, it is isomorphic to a direct product
of finitely many cyclic subgroups Znj

. Since each nj divides n, the desired conclusion follows from
Corollary 15.4. �

Remark 15.12. Note that the group in Theorem 15.11 does not need to be a direct product of the
cyclic groups Z

p
kj
j

(with maximal kj), e.g. Z2 × Z2 is of order 4 = 22 but is not cyclic.
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In view of Corollaries 15.2 and 15.4, a decomposition of G into a product of cyclic groups is not
unique in general. However, we have:

Theorem 15.13. Let G be a finitely generated abelian group. Then in any decomposition of G
into a direct sum of cyclic groups, the number r of factors Z is an invariant depending only G.

The number r in Theorem 15.13 is called the rank of G.

Proof. Let
G ∼= Zn1 × . . .× Zns × Zr

be any direct product decomposition with all nj finite. Then the torsion subgroup GT = Zn1×. . .×
Zns is uniquely determined by G and the quotient group G/GT , which is also uniquely determined
by G, is isomorphic to Zr.

It remains to prove that Zr cannot be isomorphic to Zk for r 6= k. Otherwise, assuming without
loss of generality r < k, we obtain a basis B of r elements in Zk. Then B would also span Qk

considered as vector space over Q. However, every set that spans Qk must have at least k > r
elements, which is a contradiction. �
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