Course 1213 - Introduction to group theory 2018

\mathbf{S}	h	е	е	\mathbf{t}	9
--------------	---	---	---	--------------	---

Due: at the end of the tutorial

Exercise 1

(i) Prove that for every integer k,

$$f: \mathbb{Z} \to \mathbb{Z}_n, \quad a \mapsto [ka]$$

is a group homomorphism;

(ii) Find all homomorphisms $f: \mathbb{Z}_4 \to S_3$ (where S_3 is the symmetric group).

Exercise 2

Find all solutions of the system in $z \in \mathbb{Z}$:

(i)

	$\begin{cases} z \equiv -1 \mod 5\\ z \equiv 3 \mod 6\\ z \equiv 2 \mod 8 \end{cases},$
(ii)	
	$\begin{cases} z \equiv 1 \mod 5 \\ z \equiv 1 \mod 3 \\ z \equiv 5 \mod 2 \end{cases}$

Exercise 3

- (i) For any groups G_1 and G_2 prove that $G_1 \times \{e\}$ and $\{e\} \times G_2$ are normal subgroups in $G_1 \times G_2$.
- (ii) Show that the quotient group $(G_1 \times G_2)/(G_1 \times \{e\})$ is isomorphic to G_2 .
- (iii) Prove that the intersection of any family of normal subgroups in a group is again a normal subgroup.

Exercise 4

Let H be a normal subgroup in a group G, and $f: G \to G'$ a group homomorphism. Show that the construction

$$[g] \mapsto f(g)$$

gives a well-defined map $G/H \to G'$ if and only if $H \subset \ker f$.