Course 1213 - Introduction to group theory 2018

Sheet 8

Due: at the end of the tutorial

Exercise 1

- (i) Find all injective homorphisms from \mathbb{Z} and the group of all numbers 2^n , $n \in \mathbb{Z}$.
- (ii) Find all surjective homorphisms from \mathbb{Z}_6 to \mathbb{Z}_3 .

Exercise 2

- (i) Determine all cosets in \mathbb{Z}_{10} modulo the subgroup $\langle [5] \rangle$ generated by [5].
- (ii) Determine left and right cosets in S_3 modulo the subgroup H generated by the cycle (23).
- (iii) If $H \subset G$ is a subgroup, prove that Hg = H if and only if $g \in H$.

Exercise 3

Prove or disprove:

- (i) Composition of two group homomorphisms is a group homomorphism.
- (ii) Homomorphic image of a cyclic group is cyclic.