Course 1213 - Introduction to group theory 2018

Sheet 7

Due: at the end of the tutorial

Exercise 1

Given a binary relation R, we write $a \sim b$ whenever $(a, b) \in R$. For points (x_1, y_1) and (x_2, y_2) in the plane \mathbb{R}^2 , determine which are equivalence relations:

- (i) $(x_1, y_1) \sim (x_2, y_2)$ if $x_1 + y_1 = x_2 + y_2$;
- (ii) $(x_1, y_1) \sim (x_2, y_2)$ if $x_1 = x_2$ or $y_1 = -y_2$;
- (ii) $(x_1, y_1) \sim (x_2, y_2)$ if $2y_1 2y_2$ is integer.

For the equivalence relations, determine equivalence classes.

Exercise 2

(i) For each pair a, b, perform the division of a by b with remainder:

a = -129, b = 5, a = 129, b = 7;

- (ii) Prove that if m|n and $a \equiv b \mod n$, then $a \equiv b \mod m$;
- (iii) For which n is $59 \equiv -1 \mod n$?

Exercise 3

Prove or disprove:

- (i) $(a \equiv 5 \mod n)$ implies $(a \equiv 5 + n \mod n)$;
- (ii) $(a \equiv 5 \mod n)$ implies $(a \equiv 5 + a \mod n)$;
- (iii) $(a \equiv b \mod n)$ implies $(a \equiv n \mod b)$.