Course 1213 - Introduction to group theory 2018

\mathbf{S}	h	\mathbf{e}	e	\mathbf{t}	5
--------------	---	--------------	---	--------------	---

	Due:	at	the	end	of	the	tutorial	
--	------	---------------------	-----	-----	----	-----	----------	--

Exercise 1

Write the permutation as product of disjoint cycles and determine its sign:

(i) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix};$ (ii) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 1 & 6 & 2 & 7 & 4 \end{pmatrix};$

(iii) (12)(2345)(34567) (product of overlapping cycles).

Exercise 2

Find all cyclic subgroups in the alternating group A_4 .

Exercise 3

Is there any non-cyclic subgroup $H \subset G$ with $H \neq G$, where:

- (i) $G = S_3;$
- (ii) $G = A_3;$
- (iii) $G = S_4;$
- (iv) $G = A_4$.