Course 1213 - Introduction to group theory 2018

Sheet 4

Due: at the end of the tutorial

Exercise 1

Which H are subgroups of G:

(i) $G = (\mathbb{Z}, +), H = \{0, \pm 1\};$ (ii) $G = (\mathbb{Q}^*, \cdot), H = \{\pm 1\};$ (iii) $G = S_3, H = \left\{e, \begin{pmatrix} 1 & 2 & 3\\ 2 & 1 & 3 \end{pmatrix}\right\};$ (iv) $G = S_3, H = \left\{\begin{pmatrix} 1 & 2 & 3\\ 2 & 1 & 3 \end{pmatrix}\right\};$ (iii) $G = S_3, H = \left\{e, \begin{pmatrix} 1 & 2 & 3\\ 2 & 3 & 1 \end{pmatrix}\right\}.$

(iii)
$$G = B_3, H = \begin{cases} c, (2 & 3) \\ c, (2 & 3) \end{cases}$$

Exercise 2

Find the subgroup of S_4 generated by the set of permutations:

(i)
$$\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} \right\};$$

(ii) $\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \right\};$
(iii) $\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} \right\};$
(iv) $\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} \right\}.$

Exercise 3

Which groups are cyclic:

- (i) the symmetry group S_2 ;
- (ii) the subgroup $n\mathbb{Z} \subset \mathbb{Z}$;
- (iii) the subgroup generated by $\{1/2, 1/3\}$ in $(\mathbb{Q}, +)$;
- (iv) the group of all invertible elements (\mathbb{R}^*, \cdot) .