Course 1213 - Introduction to group theory 2018

\mathbf{S}	h	e	e	\mathbf{t}	2
--------------	---	---	---	--------------	---

Due: at the end of the tutorial

Exercise 1

Let $f: S \to T$ be a map and $A, B \subset S$ be two subsets.

- (i) Show that $f(A \cap B) \subset f(A) \cap f(B)$;
- (ii) Show that $f(A \setminus B) \supset f(A) \setminus f(B)$ and illustrate by example that " \supset " cannot be replaced by "=" in general.

Exercise 2

How many maps, injective maps, surjective maps and bijective maps f from A to B exist for

- (i) $A = \{0\}, B = \{1, 2\};$
- (ii) $A = \{1, 2\}, B = \{0\};$
- (iii) $A = \{1, 2, 3\}, B = \{1, -1\}.$

Exercise 3

Which binary operations * on the natural numbers \mathbb{N} are commutative and which are associative:

- (i) m * n = m + n + 1;
- (ii) $m * n = \frac{mn}{2};$
- (ii) m * n = 1.

Exercise 4

For which binary operations * on the rational numbers \mathbb{Q} there is an identity element:

```
(i) m * n = mn;
```

```
(ii) m * n = m + n + 1;
```

- (iii) $m * n = \frac{m+n}{3};$
- (iv) m * n = -1.

Exercise 5

Prove that associativity (ab)c = a(bc) holds automatically whenever one of the elements a, b, c is the identity e.