Course 1213 - Introduction to group theory 2016

\mathbf{S}	h	е	е	t	9

Due: at the end of the tutoria	Due:	at 1	the	end	of	the	tutoria
--------------------------------	------	------	-----	-----	----	-----	---------

Exercise 1

Find all solutions of the system in $z \in \mathbb{Z}$:

(i)

$\begin{cases} z \equiv 1 \mod 5\\ z \equiv 4 \mod 6 \end{cases}$	
$ \begin{cases} z \equiv 4 \mod 0 \\ z \equiv 5 \mod 8 \end{cases} $,

(ii)

$$\begin{cases} z \equiv 1 \mod 5 \\ z \equiv -1 \mod 3 \\ z \equiv 5 \mod 2 \end{cases}$$

Exercise 2

Consider the action of $G := \mathbb{Z}$ on $S := \mathbb{Z}_2 \times \mathbb{Z}_4$ given by

$$z \cdot ([a], [b]) := ([z + a], [z + b]).$$

(i) Show that this indeed is a well-defined group action.

(iii) What are the orbits $G \cdot (a, b)$ and what are the stabilizers $G_{(a,b)}$ for $(a, b) \in S$? Are these groups cyclic?

Exercise 3

A group action $G \times S \to S$ is called *transitive* if for every $x, y \in S$, there exists $g \in G$ with $g \cdot x = y$. In the following assume |S| > 1, i.e. S has more than one element. Prove or disprove:

- (i) There exists a transitive group action on a set S, whose stabilizers satisfy $G_x \neq \{e\}$ for all $x \in S$.
- (ii) For every group $G \neq \{e\}$, there exists a set S with |S| > 1 and an transitive action of G on S such that $G_x \neq \{e\}$ for all $x \in S$.
- (iii) If G is finite and $G_x \neq \{e\}$ for all $x \in S$, then all orbits $G \cdot x$ have the same number of elements.