Course 1213 - Introduction to group theory 2016

\mathbf{S}	h	е	e	\mathbf{t}	4
--------------	---	---	---	--------------	---

	Due:	at the	e end o	f the	tutorial	
--	------	--------	---------	-------	----------	--

Exercise 1

Write the permutation as product of disjoint cycles and determine its sign:

(i) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix};$ (ii) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 1 & 6 & 2 & 7 & 4 \end{pmatrix};$

(iii) (12)(2345)(34567) (product of overlapping cycles).

Exercise 2

Find the subgroup generated by the set of permutations (written as cycles):

- (i) $\{(124)\};$
- (ii) $\{(12)(345)\};$
- (iii) $\{(12), (34)\};$
- (iv) $\{(12), (234)\};$

Exercise 3

Which sets of matrices form a group under multiplication:

(i)
$$\left\{ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in SL_2(\mathbb{Z}) : a_{11} + a_{22} = \pm 1 \right\};$$

(ii) $\left\{ A \in GL_2(\mathbb{R}) : A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\};$
(iii) $\left\{ A \in O_2(\mathbb{Q}) : A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\};$
(iv) $\left\{ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in U_2 : a_{11} = 1 \right\}.$