MA5P8 CONFORMAL FIELD THEORY

Sections 4 and 5: Defining CFTs

1. Prove that for a system $\langle \cdots \rangle$ of *n*-point functions on \mathbb{H} with pairwise quasi-primary $\varphi_i \in \mathbb{H}_{h_i, \overline{h}_i}$,

with $C_i = 0$ unless $\varphi_i \in \mathbb{H}_{0,0}$, $C_{12} = 0$ unless $h_1 = h_2$ and $\overline{h}_1 = \overline{h}_2$, and $C_{123} \in \mathbb{C}$.

2. Show that in a conformal representation of an OPE where reflection positivity holds and the vacuum is normalised to $OPE(\Omega \otimes Y) = Y$ for all $Y \in \mathbb{H}$, $T = L_2\Omega \in \mathbb{H}_{2,0}$ obeys

$$\lim_{z,w\to 0} \langle T^{\dagger}(\overline{z}^{-1})T(w)\rangle = \frac{c}{2} = \langle T,T\rangle,$$

$$\lim_{z,w\to 0} \langle T^{\dagger}(\overline{z}^{-1})\partial T(w)\rangle = 0,$$

$$\lim_{z,w\to 0} \langle (\partial T)^{\dagger}(\overline{z}^{-1})\partial T(w)\rangle = 2c = \langle L_1T, L_1T\rangle.$$