MA5P8 CONFORMAL FIELD THEORY

Section 2: The free fermion (Ising) model

- 1. Remind yourself of the definitions of the Fock space representation of the free fermion algebra (FFF) and the Virasoro modes in terms of the FFF (carefully distinguishing two sectors).
- 2. Calculate $[L_n, L_m]$ for m+n=0 and $[L_n, \psi_k]$ in the FFF, using the definitions given in the previous question.
- 3. Show that if $[L_n, L_m]\Psi = \{(m-n)L_{m+n} + \frac{c}{12}\delta_{m+n,0}m(m^2-1)\}\Psi$ for a state Ψ in the Fock space then also $[L_n, L_m]\psi_k\Psi = \{(m-n)L_{m+n} + \frac{c}{12}\delta_{m+n,0}m(m^2-1)\}\psi_k\Psi$ for all ψ_k .
- 4. Consider a unitary lwr of $\operatorname{Vir}_{\frac{1}{2}}$ with lwv v of weight $\frac{1}{2}$ and determine $a, b \in \mathbb{R}$ such that $aL_2v + bL_1^2v = 0$.
- 5. Show that

$$P(w,q) := \prod_{n=1}^{\infty} \left(1 + w \, q^{n - \frac{1}{2}} \right) \left(1 + w^{-1} \, q^{n - \frac{1}{2}} \right) = \left[\prod_{n=1}^{\infty} \left(1 - q^n \right) \right]^{-1} \sum_{k=-\infty}^{\infty} w^k \, q^{\frac{k^2}{2}},$$

in the region where P is well defined.

[Hint: A sketch of the proof was given in the lectures.]

6. With the Jacobi theta functions ϑ_n ,

$$\vartheta_2(q) = \sum_{k=-\infty}^{\infty} q^{\frac{1}{2}(k+\frac{1}{2})^2}, \quad \vartheta_3(q) = \sum_{k=-\infty}^{\infty} q^{\frac{1}{2}k^2}, \quad \vartheta_4(q) = \sum_{k=-\infty}^{\infty} (-1)^k q^{\frac{1}{2}k^2},$$

and the Dedekind eta function η , show that

$$\frac{1}{2} \left(\left| \frac{\vartheta_2}{\eta} \right|^2 + \left| \frac{\vartheta_3}{\eta} \right|^2 + \left| \frac{\vartheta_4}{\eta} \right|^2 \right) = \frac{1}{|\eta|^2} \sum_{n,l} q^{\frac{1}{4} (\frac{n}{\sqrt{2}} + l\sqrt{2})^2} \overline{q}^{\frac{1}{4} (\frac{n}{\sqrt{2}} - l\sqrt{2})^2}.$$

- 7. Show that the Fourier transform \widetilde{f} (where $\widetilde{f}(y) = \int_{-\infty}^{\infty} e^{-2\pi i x y} f(x) dx$) of $f(x) := e^{-\left(\sqrt{\pi a} \frac{x}{r} \frac{b}{2\sqrt{\pi a}}\right)^2}$ is $\widetilde{f}(y) = \frac{r}{\sqrt{a}} e^{-\frac{y^2 r^2 \pi}{a} \frac{i y b r}{a}}$.
- 8. Using Poisson resummation (see your notes) and the previous question, show that, provided both sides converge absolutely, for $a, b \in \mathbb{C}$

$$\sum_{n=-\infty}^{\infty} e^{-\pi a n^2 + bn} = \frac{1}{\sqrt{a}} \sum_{k=-\infty}^{\infty} e^{-\frac{\pi}{a} \left(k - \frac{b}{2\pi i}\right)^2}.$$

9. For $q = \exp(2\pi i \tau)$ and $\tilde{q} = \exp(-2\pi i/\tau)$, using the previous question, calculate $\vartheta_k(\tilde{q})$ in terms of $\vartheta_k(q)$ for the Jacobi theta functions ϑ_2 , ϑ_3 , ϑ_4 .