Differential geometrie I WS 2020/21 9. Dezember, 2020

Übungsblatt 6

Abgabe: 16. Dezember, 2020, 12:00 Uhr

Aufgabe 21. Betrachten Sie \mathbb{R}^2 , versehen mit den Standardkoordinaten $(x^1, x^2)^T$, und den Einheitskreis $\mathbb{S}^1 \subset \mathbb{R}^2$ mit der induzierten Struktur einer glatten Mannigfaltigkeit. Seien $(\cos \theta, \sin \theta)^T$ Polarkoordinaten auf \mathbb{S}^1 .

- a) (2 Punkte) Zeigen Sie: Bezüglich Standardkoordinaten ist das Vektorfeld $\frac{\partial}{\partial \theta}$ auf \mathbb{S}^1 durch $-x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x^2}$ gegeben.
- b) (2 Punkte) Betrachten Sie die Differentialform $\vartheta = -x^2 dx^1 + x^1 dx^2$ auf \mathbb{R}^2 . Die Einschränkung $\vartheta|_{\mathbb{S}^1}$ ist die Differentialform auf \mathbb{S}^1 , die durch $(\vartheta|_{\mathbb{S}^1})|_p := \vartheta|_p$ für alle $p \in \mathbb{S}^1$ definiert ist. Zeigen Sie: Auf \mathbb{S}^1 gilt: $(\vartheta|_{\mathbb{S}^1})(-x^2\frac{\partial}{\partial x^1}\Big|_{\mathbb{S}^1} + x^1\frac{\partial}{\partial x^2}\Big|_{\mathbb{S}^1}) = 1$.
- **Aufgabe 22.** a) (2 Punkte) Seien M eine glatte Mannigfaltigkeit und $p \in M$. Zeigen Sie: Für beliebige $X_p \in T_pM$ und $\vartheta_p \in T_p^*M$ existieren glatte Vektorfelder X und glatte 1-Formen ϑ auf M, so dass $X(p) = X_p$ bzw. $\vartheta(p) = \vartheta_p$.

Hinweis: Betrachten Sie eine Karte $\xi:U\to \xi(U)$ um pund nutzen Sie Lemma 1.2.5 aus der Vorlesung.

b) (2 Punkte) Für m>0 seien $S_m\subset\mathbb{R}^4$ und $\xi:S_m\to\mathbb{R}\times(0,2m)\times(0,\pi)\times(0,2\pi)$ definiert wie in Beispiel 3.2.2 aus der Vorlesung. Für alle $p\in S_m$ seien (e_1,\ldots,e_4) die Koordinatentangentialvektoren zu ξ von T_pS_m . Betrachten Sie die Funktion $h:(0,2m)\to\mathbb{R}$, die durch $h(r):=1-\frac{2m}{r}$ definiert ist. Zeigen Sie: Für $p\in S_m$ mit $\xi(p)=(t,r,\theta,\varphi)$ gilt:

$$\left(g_p(e_j, e_k)\right)_{j,k \in \{1,\dots,4\}} = \operatorname{diag}(-h(r), (h(r))^{-1}, r^2 \sin^2 \theta, r^2)$$

ist ein metrischer Tensor der Signatur (3, 1, 0) auf S_m .

Aufgabe 23. a) (2 Punkte) Zeigen Sie:

{Tensoren vom Typ (1,1) auf
$$\mathbb{R}^n$$
} $\simeq \operatorname{Mat}_{\mathbb{R}}(n \times n)$,

wobei wir für die linke Seite kurz $\mathbb{R}^n \otimes (\mathbb{R}^n)^*$ schreiben.

Hinweis: Betrachten Sie die Standardbasis (e_1, \ldots, e_n) von \mathbb{R}^n und ihre Dualbasis (e_1^*, \ldots, e_n^*) . Konstruieren Sie einen Isomorphismus $\mathbb{R}^n \otimes (\mathbb{R}^n)^* \to \operatorname{Mat}_{\mathbb{R}}(n \times n)$, $e_i \otimes e_j^* \mapsto E_{ji}$, wobei E_{ji} die Standardmatrix bezeichnet, deren einziger von Null verschiedener Eintrag an der Stelle (j,i) steht.

b) (2 Punkte) Sei M eine glatte Mannigfaltigkeit. Zeigen Sie: Als $\mathscr{F}(M)$ -Modul gilt für alle $r,s\in\mathbb{Z}_{\geq 0}$:

$$\mathcal{T}^{r+1}_s(M) \simeq \{A: \mathscr{X}^*(M)^r \times \mathscr{X}(M)^s \to \mathscr{X}(M) \mid A \text{ ist } \mathscr{F}(M)\text{-multilinear}\}.$$

Hinweis: Betrachten Sie die Abbildung

$$\phi: \{A: \mathscr{X}^*(M)^r \times \mathscr{X}(M)^s \to \mathscr{X}(M) \mid A \text{ ist } \mathscr{F}(M)\text{-multilinear}\} \to \mathcal{T}_s^{r+1}(M),$$

die durch
$$\phi(A)(\vartheta^0, \vartheta^1, \dots, \vartheta^r, X_1, \dots, X_s) = \vartheta^0(A(\vartheta^1, \dots, \vartheta^r, X_1, \dots, X_s))$$
 definiert ist.

Aufgabe 24. Sei M eine glatte Mannigfaltigkeit positiver Dimension.

a) (2 Punkte) Betrachten Sie die Lie-Klammer $\mathscr{X}(M) \times \mathscr{X}(M) \to \mathscr{X}(M)$, die durch

$$[X,Y](f) := X(Y(f)) - Y(X(f)) \quad \forall X,Y \in \mathscr{X}(M), \quad f \in \mathscr{F}(M)$$

definiert ist. Zeigen Sie, dass sie kein Tensorfeld auf M ist, indem Sie zeigen:

$$\exists X, Y \in \mathscr{X}(M), \ f, \widetilde{f} \in \mathscr{F}(M) \ \mathrm{mit} \ [\widetilde{f}X, Y](f) - \widetilde{f} \cdot [X, Y](f) \not\equiv 0.$$

Hinweis: Man darf ohne Beweis nutzen, dass $[X,Y] \in \mathcal{X}(M)$.

b) (2 Punkte) Sei \mathbb{R}^3 versehen mit den Standardkoordinaten $(x^1, x^2, x^3)^T$. Betrachten Sie das Tensorfeld $A = \frac{\partial}{\partial x^1} \otimes dx^1 + \frac{\partial}{\partial x^2} \otimes dx^2 + \frac{\partial}{\partial x^3} \otimes dx^3 \in \mathcal{T}_1^1(\mathbb{R}^3)$. Zeigen Sie: Bezüglich der Kugelkoordinaten $(r, \theta, \varphi)^T$, wobei

$$x^1 = r \sin \theta \cos \varphi$$
, $x^2 = r \sin \theta \sin \varphi$, $x^3 = r \cos \theta$,

mit
$$r > 0$$
, $\theta \in (0, \pi)$, $\varphi \in (0, 2\pi)$, ist $A = \frac{\partial}{\partial r} \otimes dr + \frac{\partial}{\partial \theta} \otimes d\theta + \frac{\partial}{\partial \varphi} \otimes d\varphi$.

Hinweis: Zeigen Sie, dass A unter dem Isomorphismus aus Aufgabe 23 b) der Identitätsabbildung $id: \mathscr{X}(\mathbb{R}^3) \to \mathscr{X}(\mathbb{R}^3)$ entspricht.

Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt.