Übungsblatt 10

Abgabe: 27. Januar, 2021, 12:00 Uhr

Aufgabe 37. Sei $\mathbb{S}^2 \subset \mathbb{R}^3$ mit der von den Standard-Strukturen von \mathbb{R}^3 induzierten Struktur einer Riemannschen Mannigfaltigkeit.

a) (2 Punkte) Zeigen Sie: Bezüglich Kugelkoordinaten $\xi = (\theta, \varphi)^T$ auf \mathbb{S}^2 hat der Riemannsche Krümmungstensor R genau eine unabhängige Komponente R_{ijkm} , wobei $i, j, k, m \in \{\theta, \varphi\}$,

$$R_{ijkm} := g(R_{\partial_k,\partial_m}\partial_j,\partial_i),$$

und $g = d\theta \otimes d\theta + (\sin \theta)^2 d\varphi \otimes d\varphi$ die Standardmetrik auf S² ist.

Hinweis: Zeigen Sie mithilfe von Proposition 5.3, dass $R_{\theta\varphi\theta\varphi} = R_{\varphi\theta\varphi\theta} = -R_{\theta\varphi\varphi\theta} = -R_{\varphi\theta\theta\varphi}$.

b) (2 Punkte) Zeigen Sie: $R_{\varphi\theta\varphi\theta} = -(\sin\theta)^2$.

Hinweis: Nutzen Sie Aufgabe 32 c).

Aufgabe 38. Sei M eine glatte Mannigfaltigkeit und ∇ ein Zusammenhang auf M.

a) (2 Punkte) Seien $\vartheta \in \mathscr{X}^*(M)$ und $X \in \mathscr{X}(M)$. Betrachten Sie die Abbildung $\nabla_X \vartheta : \mathscr{X}(M) \to \mathscr{F}(M)$, die durch

$$\forall Y \in \mathscr{X}(M) \colon (\nabla_X \vartheta)(Y) := \nabla_X (\vartheta(Y)) - \vartheta(\nabla_X Y)$$

definiert ist. Zeigen Sie, dass $\nabla_X \vartheta$ ein Tensorfeld vom Typ (0,1) ist und dass $\nabla_X \vartheta \in \mathscr{X}^*(M)$.

b) (2 Punkte) Seien $A \in \mathcal{T}_s^r(M)$ und $\vartheta^1, \ldots, \vartheta^r \in \mathscr{X}^*(M), X_1, \ldots, X_s, X \in \mathscr{X}(M)$. Zeigen Sie: $\nabla_X A \in \mathcal{T}_s^r(M)$, wobei $\nabla_X A$ wie in Definition 5.4 aus der Vorlesung definiert ist.

Aufgabe 39. Mit den Notationen von Aufgabe 38:

a) (2 Punkte) Zeigen Sie: Definition 5.4 aus der Vorlesung liefert eine \mathbb{R} -lineare Abbildung

$$\nabla: \mathcal{T}_s^r(M) \to \mathcal{T}_{s+1}^r(M), \ A \mapsto \nabla A.$$

b) (2 Punkte) Betrachten Sie nun eine $\mathscr{F}(M)$ -multilineare Abbildung $A: \mathscr{X}^*(M)^r \times \mathscr{X}(M)^s \to \mathscr{X}(M)$. Zeigen Sie, dass Definition 5.4 und der Isomorphismus ϕ aus Aufgabe 23 b) für alle $X \in \mathscr{X}(M)$ die folgende Formel induzieren:

$$(\nabla_X A)(\vartheta^1, \dots, \vartheta^r, X_1, \dots, X_s) = \nabla_X (A(\vartheta^1, \dots, \vartheta^r, X_1, \dots, X_s))$$

$$- \sum_{j=1}^r A(\vartheta^1, \dots, \nabla_X \vartheta^j, \dots, \vartheta^r, X_1, \dots, X_s)$$

$$- \sum_{k=1}^s A(\vartheta^1, \dots, \vartheta^r, X_1, \dots, \nabla_X X_k, \dots, X_s).$$

Zeigen Sie, dass $\nabla_X A$ auch eine $\mathscr{F}(M)$ -multilineare Abbildung ist.

Hinweis: Berechnen Sie $\nabla_X(\phi(A))$ und setzen Sie $\nabla_X A := \phi^{-1}(\nabla_X(\phi(A)))$.

Aufgabe 40. Sei $A \in \operatorname{Mat}_{\mathbb{C}}(n \times n)$. Wir definieren das Exponential von A durch die Potenzreihe

$$e^A := \sum_{k>0} \frac{1}{k!} A^k$$
, wobei $A^0 := 1$.

Man darf annehmen, dass die Reihe immer konvergiert d.h., dass e^A wohldefiniert ist, und dass komponentenweise absolute Konvergenz vorliegt.

- a) (1 Punkt) Seien $A, B \in \text{Mat}_{\mathbb{C}}(n \times n)$ so, dass AB = BA. Zeigen Sie: $e^A \cdot e^B = e^{A+B}$.
- b) (2 Punkte) Zeigen Sie: Für alle $A \in \operatorname{Mat}_{\mathbb{C}}(n \times n)$ gilt $\det(e^A) = e^{Tr(A)}$. Folgern Sie, dass $e^A \in GL_n(\mathbb{C})$.

Hinweis: Nutzen Sie die Jordan-Normalform J_A von A, wobei $PAP^{-1} = J_A \in \operatorname{Mat}_{\mathbb{C}}(n \times n)$ und $P \in GL_n(\mathbb{C})$. Zeigen Sie, dass $P^{-1}e^{J_A}P = e^A$.

c) (1 Punkt) Zeigen Sie: Falls $A \in T_1O(n)$, dann gilt $e^A \in SO(n)$. Hinweis: Nutzen Sie Teile a), b) und Aufgabe 12 c).

Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt.