Anwesenheitsaufgaben

Auf diesem Blatt bezeichnet $\|\cdot\|$ die Standard-Norm auf \mathbb{R}^n .

Aufgabe 1 (Unendlicher Durchschnitt von offenen Mengen). Sei \mathbb{N} die Menge der natürlichen Zahlen mit der folgenden Topologie \mathcal{T} :

$$\mathcal{T} = \{ S \subset \mathbb{N} \mid \mathbb{N} \setminus S \text{ ist endlich} \} \cup \{\emptyset\}.$$

- a) Zeigen Sie, dass \mathcal{T} tatsächlich eine Topologie auf \mathbb{N} ist.
- b) Betrachten Sie für $n \in \mathbb{N}$ die Menge

$$S_n = \{0\} \cup \{n+1\} \cup \{n+2\} \cup \dots$$

Zeigen Sie, dass $S_n \in \mathcal{T}$ für jedes $n \in \mathbb{N}$. Ist die Menge

$$\bigcap_{n=0}^{\infty} S_n$$

auch offen?

Aufgabe 2 (Stetigkeit). Sei $\mathbb R$ versehen mit der Standardtopologie und $U \subset \mathbb R^n$ offen. Zeigen Sie: die beiden Definitionen der Stetigkeit einer Funktion $f:U\to\mathbb R^m$ sind äquivalent:

Definition 1: Die Funktion $f:U\to\mathbb{R}^m$ ist stetig genau dann wenn für jede offene Menge $V\subset\mathbb{R}^m$ auch $f^{-1}(V)$ offen ist.

Definition 2: Die Funktion $f: U \to \mathbb{R}^m$ ist stetig genau dann wenn

$$\forall p \in U, \forall \epsilon > 0 \ \exists \delta > 0 : \forall q \in U \ \text{falls} \ \|p - q\| < \delta, \ \text{dann} \ \|f(p) - f(q)\| < \epsilon.$$

Aufgabe 3 (Untermannifaltigkeiten von \mathbb{R}^n).

- a) Zeigen Sie: Die Vereinigung der beiden Koordinaten-Achsen in \mathbb{R}^2 ist keine Untermannifaltigkeit von \mathbb{R}^2 .
 - *Hinweis*: Betrachten Sie, was in einer Umgebung von 0 passiert, wenn 0 entfernt wird.
- b) Zeigen Sie: Falls $a \in \mathbb{R}$ mit $a \neq 0$, dann ist $\mathcal{P}_a := \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 z^2 = a\}$ eine Untermannifaltigkeit von \mathbb{R}^3 . Warum ist \mathcal{P}_0 keine Untermannifaltigkeit von \mathbb{R}^3 ?

Aufgabe 4 (Stereographische Projektion). Sei $\mathbb{S}^2=\{x\in\mathbb{R}^3\mid \|x\|=1\}\subset\mathbb{R}^3$ die Kugel mit der induzierten Topologie von \mathbb{R}^3 und seien die Punkte

$$N = (0, 0, 1) \text{ und } S = (0, 0, -1) \in \mathbb{R}^3$$

deren zwei Pole. Erinnern Sie sich an die in der Vorlesung definierten *stere- ographischen Projektionen*, gegeben durch die Abbildungen:

$$\xi_N : \mathbb{S}^2 \setminus \{N\} \to \mathbb{R}^2,$$

 $(x_1, x_2, x_3) \mapsto \frac{1}{1 - x_3} (x_1, x_2),$

und

$$\xi_S: \mathbb{S}^2 \setminus \{S\} \to \mathbb{R}^2,$$
$$(x_1, x_2, x_3) \mapsto \frac{1}{1 + x_3} (x_1, x_2).$$

Betrachten Sie nun die *Kugelkoordinaten* (θ, ϕ) auf \mathbb{S}^2 :

$$(x_1, x_2, x_3) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta),$$

wobei $(\theta, \phi) \in U$ mit offen $U \subset [0, \pi] \times [0, 2\pi]$, und die *Polarkoordinaten* (r, ψ) auf \mathbb{R}^2 :

$$(u_1, u_2) = (r\cos\psi, r\sin\psi),$$

wobei $(r, \psi) \in V$ mit offen $V \subset [0, 1] \times [0, 2\pi]$.

Bestimmen Sie die Abbildungen ξ_N und ξ_S bzgl. der Polar- und Kugelkoordinaten.