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K3 SURFACES

1. Generalities; good educational background

1.1 (I). Introduction to complex geometry (21.10.2015).
[Jens Eberhardt]

Introduce almost complex structures on smooth manifolds M , the (p, q)-forms
Ap,q(M), and the operators d, ∂, ∂. State (and maybe prove) the ∂-Poincaré
lemma. Explain the integrability condition for almost complex structures, including
the Newlander-Nirenberg Theorem, to make contact with the definition of complex
manifolds by holomorphic atlases. Introduce holomorphic vector bundles (don’t for-
get to discuss short exact sequences of such bundles!), in particular the holomorphic
tangent bundles of complex manifolds, and Dolbeault cohomology.

For guidance, [Wen15, §1.1, up to the first paragraph of page 6] gives a brief
summary. A useful reference is [Huy05, §2.6], including some of the material leading
up to this section. For the discussion of integrability, [Wei71, II 2&3] is excellent
and should be used, see in particular [Wei71, II Prop. 2]. For Dolbeault cohomology,
use [BHPvdV04, I §12]; include their Lemma 12.1 (without proof) or agree with
the speaker for talk (III) that they will do so.

1.2 (II). Introduction to Kähler geometry (28.10.2015).
[Konrad Voelkel]

Define Kähler manifolds, discussing various equivalent definitions. At least, you
should include the following characterizations: (i) closedness of the Kähler form;
(ii) existence of local Kähler potentials; (iii) agreement of Levi-Civita and Chern
connection; (iv) almost complex structure, which is parallel with respect to the
Levi-Civita connection; (v) osculation of the metric.

Introduce the Hodge star and the Lefschetz operators, and discuss the Kähler
identities (don’t attempt to give a full proof!).

For guidance, [Wen15, §1.1, p.6–Lemma 1.1.2] gives a brief summary. Useful
references are [Bal, §4] and [Huy05, §3.1]. You may also find [Wei71, I&II] helpful.

1.3 (III). Hodge Theory and Chern-Weil Theory on Kähler manifolds
(04.11.2015). [Sebastian Goette]

In the first half of the talk, discuss the behaviour of the Fröhlicher spectral
sequence for Kähler manifolds, the Hodge decomposition, and the ∂∂-lemma. Useful
references include [Huy05, §3.2] and [BHPvdV04, I (13.2)–(13.7)]. You may also
find [Wei71, I&II] helpful.

In the second half of the talk, give an introduction to Chern-Weil Theory, to
pave the way for the index theory approach of talk (VI). References on this topic
include [MS74, Appendix C] and [Hir66, Chapter I].
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1.4 (IV). A compact complex surface is Kähler if and only if its first Betti
number is even (11.11.2015). [Oliver Bräunling and Behrouz Taji]

Summarize the proof of this statement by introducing and constructing Kähler
currents.

The proof is due to Lamari [Lam99], and it uses Demailly’s regularity theo-
rem [Dem92], in order to show that the existence of Kähler currents guarantees
the Kähler condition for some (repeated) blow up of the surface. A criterion
for the existence of Kähler currents is then derived in terms of so-called weakly
plurisubharmonic (1, 1) currents. If the first Betti number is even, then one proves
a strengthening of the ∂∂ lemma, which finally leads to the completion of the proof.

An extended summary with simplifications from [DP04] is given in [BHPvdV04,
IV §3]. The proof is ingeneous, and certainly a little challenging.

1.5 (V). The Calabi-Yau Theorem (18.11.2015). [Anda Degeratu]
The Calabi-conjecture [Cal54], proved by S.-T. Yau in [Yau78], states the fol-

lowing: Let M denote a Calabi-Yau manifold, i.e. a compact Kähler manifold
with c1(M) = 0. Then every Kähler class of M contains a unique Ricci-flat Kähler
metric.

Introduce Calabi-Yau manifolds and discuss the condition of vanishing first
Chern class and how it relates to the Ricci tensor. Explain the statement of the
theorem by introducing Kähler classes. Give an outline of the proof by stating the
complex Monge-Ampère equation, and by summarizing Yau’s proof of existence of
solutions.

2. K3 surfaces: Definition, topological invariants, and examples

2.1 (VI). K3 surfaces: Definition and classical invariants (25.11.2015).
[Maximilian Schmidtke and Anja Wittmann]

Define K3 surfaces and calculate their classical topological and analytic invari-
ants, namely the Euler number, signature, and holomorphic Euler characteristic
(Â-genus), and then the cohomology over R. See [BHPvdV04, VIII §2] for the
definition and [BHPvdV04, VIII (3.1)–(3.5)] for the results, but preferably follow
[Wen15, §1.2] and references therein to include the classification of Calabi-Yau 2-
folds via the Atiyah-Singer Index theorem in your talk: Every connected Calabi-Yau
2-fold is either a complex torus or a K3 surface. Here, [Hir66, Chapters II and III]
may be helpful. Do not discuss the integral cohomology of K3 [BHPvdV04, VIII
(3.3)], since this is done in talk (VII).

2.2 (VII). The integral cohomology of K3 (02.12.2015). [Nadine Große]
Present the calculation of the integral cohomology of K3, following, for example,
[BHPvdV04, VIII (3.3)]. You will need to intoduce some background material from
lattice theory, which you can find in [BHPvdV04, I §2] or in [Mor84, §1].

Introduce the notions of Néron-Severi lattice, transcendental lattice, and Picard
number ([BHPvdV04, VIII §1] and [Mor84, §1]). Using Kodaira’s Embedding Theo-
rem [GH78, p. 191], show that a K3 surface is algebraic (or, equivalently, projective)
if and only if its Néron-Severi lattice is not negative definite; see also the notion of
polarized Hodge structure in [Mor84, §1]. Introduce the notions of effective divi-
sors, the Kähler cone, effective Hodge isometries and Picard-Lefschetz reflections,
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using [BHPvdV04, VIII §1] and covering [BHPvdV04, VIII (3.6)–(3.12)]. Using
Kodaira’s embedding theorem again (see also [BHPvdV04, IV (6.1)]), show that all
rational elements in the Kähler cone are Kähler classes.

If time allows, it would be nice to characterize minimally resolved surface singu-
larities on a K3 surface through the occurence of nodal classes in the Néron-Severi
lattice.

While the first few pages of [Mor84] are very helpful for this talk, note that the
surjectivity of the period map, [Mor84, Theorem 1.6], is extensively used in that
paper, but that we will prove it only much later in the seminar.

2.3 (VIII). The Kummer construction (09.12.2015). [Florian Beck]
Introduce the Kummer construction and show that every Kummer surface is a K3
surface, following [BHPvdV04, V §16], [Wen15, §1.3]. You may find [BHPvdV04,
I §9] useful. Present the calculation of the Néron-Severi lattice for Kummer sur-
faces [BHPvdV04, VIII (5.1)-(5.8)], including the relevant background material on
affine geometry over F2 from [BHPvdV04, VIII §4]. Include the characterization of
Kummer K3s through the occurence of 16 disjoint nodal curves [BHPvdV04, VIII
(6.1)], stated also at the end of [Wen15, §1.3], or agree with the next speaker that
they will do so.

You may find parts of [Mor84, §2–4] useful, though this reference occasionally
uses the surjectivity of the period map, which we will prove only much later in the
seminar.

If time allows, you can include further material on surface singularities that can
occur on K3 (coordinate this with the previous speaker!), or you can explain how,
by a construction which is analogous to the Kummer construction, one obtains
manifolds with G2 holonomy [Joy00, §§11, 12].

2.4 (IX). The Torelli Theorem for Kummer K3s (16.12.2015).
[Martin Schwald]

The Torelli Theorem for Kummer surfaces is a main ingredient that we will need
in order to construct the moduli space of complex structures on K3. It is beautiful
in its own right, as we shall see in this talk:

State and prove the Torelli Theorem and the weak Torelli Theorem for projective
Kummer surfaces, following [BHPvdV04, VIII (5.9)] and [BHPvdV04, VIII §6]. You
should agree with the previous speaker whether or not they are already covering
the characterization of Kummer K3s [BHPvdV04, VIII (6.1)]. In the proof of
[BHPvdV04, VIII (5.9)], you will need a version of the Torelli theorem for complex
two-tori, [BHPvdV04, I (14.2) and V §3], which you should also present. Very nice
related results can be found in [SM74], and if time allows, you may want to mention
them.

2.5 (X). K3 generates the 4-dimensional spin cobordism group (23.12.2015).
[Yi-Sheng Wang]

Introduce the spin cobordism group Ωspin
4 and explain why it is isomorphic to Z

with K3 as generator. This is the statement of Corollary 1 in [Kir89, XI §1]. The
main task for the speaker will be to give a lightning (and enlightening) introduction
to cobordism theory, to motivate why this result is useful, and to summarize its
proof.
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3. Moduli spaces of K3 surfaces

3.1 (XI). All K3 surfaces are diffeomorphic (13.01.2016).
[Natalie Peternell]

The first result to be presented in this talk is the local Torelli theorem [BHPvdV04,
VIII (7.3)], which describes the moduli space of complex structures on K3 locally.
In particular, the period map is shown to yield a local isomorphism. The proof
uses standard techniques from deformation theory; you can follow the arguments
in [BHPvdV04, VIII §7].

Secondly, following [BHPvdV04, VIII §8], show that period points of marked pro-
jective Kummer surfaces are dense in the period domain [BHPvdV04, VIII (8.5)].
As a corollary, it follows that any two K3 surfaces are diffeomorphic [BHPvdV04,
VIII (8.6)], because this is so for all projective marked Kummer surfaces.

3.2 (XII). The moduli space of complex structures on K3 (20.01.2016).
[Daniel Harrer and Doris Hein]

This talk and the next one are closely related; the next speaker and you may de-
cide to distribute the material differently from what is suggested here. The aim is
to give a global construction of the moduli space of complex structures on K3 by
means of the period map. In fact, a refined period map is needed, which is shown
to be injective. Its surjectivity will be proved in yet one further step in talk (XIII).

Give the construction of the moduli space of complex structures on K3 surfaces
by gluing Kuranishi families as in [BHPvdV04, VIII (12.1)]. Show that this moduli
space is non-Hausdorff by Atiyah’s example [Ati58], see [BHPvdV04, VIII (12.2)].

Introduce the notions of marked pairs, consisting of a K3 surface and a Kähler
class on it, and the refined period map as in [BHPvdV04, VIII §12]. Give the
construction of the fine moduli space of marked pairs. This uses results on the
behaviour of the Kähler cone under deformations [BHPvdV04, VIII §9], which you
should also present.

Conclude by stating the description [BHPvdV04, VIII (12.3)] of the moduli space
of complex structures on K3, which will follow from the Torelli theorem, whose proof
is the subject of the next talk.

3.3 (XIII). The Torelli Theorem for K3 surfaces (27.01.2016).
[Emanuel Scheidegger]

This talk and the previous one are closely related; the previous speaker and you
may decide to distribute the material differently from what is suggested here.

State and prove the Torelli theorem for K3 surfaces [BHPvdV04, VIII (11.1)–
(11.4)]. The proof uses the results of [BHPvdV04, VIII §10] on degenerations of
isomorphisms between K3 surfaces, which you should present, as well.

3.4 (XIV). Hyperkähler geometry and surjectivity of the period map for
K3 (03.02.2016). [Katrin Wendland]
This talk completes the description of the moduli space of complex structures on
K3, by showing that the refined period map is also surjective. In fact, instead of
the moduli space of complex structures, in effect one constructs the moduli space
of hyperkähler structures on K3 and then obtains the complex structure moduli
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space from the latter.

Introduce the notion of hyperkähler structure and discuss its properties, follow-
ing [BHPvdV04, VIII §13] (where hyperkähler structures are called quaternionic
structures). If time allows, you can discuss special holonomies in this context
[Huy05, 4.A.12-4.A.18], [Joy00]. Summarize the proof of the surjectivity of the
period map for K3 surfaces, following [BHPvdV04, VIII §14]. As an application of
the surjectivity of the period map, deduce global descriptions of the moduli spaces
of complex structures and hyperkähler structures on K3, respectively, in terms of
Grassmannians of positive definite oriented 2-dimensional and 3-dimensional sub-
spaces, respectively, in H2(K3, R) (see also [BHPvdV04, VIII (8.5) and (13.5)]).

If time allows, discuss lattice polarized K3 surfaces and their moduli spaces
[Dol96].

4. K3 surfaces from an arithmetic view point

4.1 (XV). The Kuga-Satake construction (10.02.2016). [Fritz Hörmann]
According to [Huy, §4], the Kuga-Satake construction “associates with any weight
two Hodge structure a Hodge structure of weight one. Geometrically, this allows
to pass from the K3 surface to a complex torus.”

The task of this talk is to give an lightning (and enlightening) overview on the
Kuga-Satake construction, starting out over R, see [Huy, §4]. It would be interesting
if you explained some arithmetic properties of K3 surfaces and their relation to the
Tate conjecture.
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[Lam99] A. Lamari, Courants kählériens et surfaces compactes. (Kähler currents and com-

pact surfaces)., Ann. Inst. Fourier 49 (1999), no. 1, 263–285.
[Mor84] D.R. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984),

105–121.

[MS74] J.W. Milnor and J.D. Stasheff, Characteristic classes, Princeton University
Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974, Annals of Mathe-

matics Studies, No. 76.

[SM74] T.J. Shioda and N. Mitani, Singular abelian surfaces and binary quadratic forms,
in: Classification of Algebraic Varieties and Compact Complex Manifolds, A. Dold

and B. Eckmann, eds., Lecture Notes in Math. 412, 1974, pp. 259–287.
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