

Lineare Algebra I, Lösung zur 3. Aufgabe

Aufgabe 1 (4 Punkte). Sei $\mathbb{R}_{>k} = \{x \in \mathbb{R} \mid x > k\}$, und definiere die Verknüpfung * durch

$$x * y = xy - x - y + 2$$

für $x, y \in \mathbb{R}$.

• Ist $G = (\mathbb{R}_{>1}, *)$ eine Gruppe?

Da für $x, y \in \mathbb{R}_{>1}$ gilt, daß

$$x > 1 \stackrel{y-1>0}{\Longrightarrow} x(y-1) > y-1 \implies x * y = xy - x - y + 2 > 1$$

d.h. $x * y \in G$ für alle $x, y \in G$, ist G abgeschlossen bezüglich der Verknüpfung *.

Für $x, y, z \in \mathbb{R}_{>1}$ gilt (mit der Assoziativität der Multiplikation in \mathbb{R} und der Kommutativität der Addition in \mathbb{R}):

$$(x*y)*z = (xy-x-y+2)z - (xy-x-y+2) - z + 2 = xyz - xz - yz - xy + z + x + y + 2$$

und

$$x*(y*z) = x(yz - y - z + 2) - x - (yz - y - z + 2) + 2 = xyz - xz - yz - xy + z + x + y + 2$$

Damit gilt das Assoziativgesetz.

Da $2 \in \mathbb{R}_{>1}$ und für alle $x \in \mathbb{R}_{>1}$ gilt:

$$2 * x = 2x - 2 - x + 2 = x$$
.

ist e = 2 das neutrale Element von G.

Sei $x \in \mathbb{R}_{>1}$. Dann ist $\frac{x}{x-1} \in \mathbb{R}_{>1}$, da x > x-1 und x-1 > 0 und daher $\frac{x}{x-1} > 1$. Außerdem gilt:

$$\frac{x}{x-1} * x = \frac{x^2}{x-1} - \frac{x}{x-1} - x + 2 = \frac{x^2 - x - x(x-1)}{x-1} + 2 = 2.$$

Daher ist $\frac{x}{x-1}$ das inverse Element zu x.

Damit ist G eine Gruppe bezüglich der Verknüpfung *.

Ist G abelsch?

Ja, G ist abelsch, da für $x, y \in G$ (wieder Asso/Kommu der Verknüpfungen in \mathbb{R}):

$$x * y = xy - x - y + 2 = yx - y - x + 2 = y * x$$

• Ist $H=(\mathbb{R}_{>3},*)$ eine Gruppe? Nein: Wäre H eine Gruppe, dann müsste es ein $e\in H$ geben mit

$$e * x = x$$

für alle $x \in H.$ Aber

$$x = e * x \implies x = ex - x - e + 2 \implies 2(x - 1) = e(x - 1) \stackrel{x > 1}{\Longrightarrow} 2 = e$$
.

Da aber $e=2\not\in H,$ gibt es also kein neutrales Element der Verknüpfung * in H, also ist H keine Gruppe.