

## Lineare Algebra I, Blatt 10

(Lineare Abbildungen)

Abgabe: bis Freitag, den 19.1., 12:00 Uhr.

**Aufgabe 1** (4 Punkte). Sei  $F: V \to W$  eine Abbildung zwischen K-Vektorräumen V und W. Zeigen Sie:

F ist genau dann K-linear, wenn

$$F(\lambda u + \mu v) = \lambda F(u) + \mu F(v)$$
 für alle  $\lambda, \mu \in K, u, v \in V$ .

" $\Longrightarrow$ ": Sei F K-linear, d.h. es gelten

(L1) 
$$\forall u, v \in V : F(u+v) = F(u) + F(v)$$

(L2) 
$$\forall v \in V \forall \lambda \in K : F(\lambda v) = \lambda F(v)$$
.

Dann gilt  $\forall \lambda, \mu \in K, u, v \in V$ :

$$F(\lambda u + \mu v) \stackrel{L1}{=} F(\lambda u) + F(\mu v) \stackrel{L2}{=} \lambda F(u) + \mu F(v). \tag{1}$$

" <==": Es gelte (1) für alle  $\lambda, \mu \in K, u, v \in V$ . Dann gilt insbesondere für  $\lambda = \mu = 1 \in K, u, v \in V$ :

$$F(u+v) = F(1 \cdot u + 1 \cdot v) \stackrel{\text{(1)}}{=} 1 \cdot F(u) + 1 \cdot F(v) = F(u) + F(v).$$

Außerdem gilt für  $v \in V, \lambda \in K$  mit  $u \in V$  beliebig und  $\mu = 0$ :

$$F(\lambda \cdot v) = F(\lambda \cdot v + 0 \cdot u) \stackrel{(1)}{=} \lambda \cdot F(v) + \underbrace{0 \cdot F(u)}_{-0} = \lambda \cdot F(v)$$

Damit gelten (L1) und (L2).

**Aufgabe 2** (**4 Punkte**). Seien V und W K-Vektorräume und  $(v_i)_{i \in I}$  eine Basis von V sowie  $(w_i)_{i \in I}$  eine Familie von Vektoren in W. Sei  $F: V \to W$  die K-lineare Abbildung, die durch  $F(v_i) = w_i$  für alle  $i \in I$  definiert ist. Zeigen Sie:

F ist genau dann nicht injektiv, wenn die Familie  $(w_i)_{i \in I}$  linear abhängig ist.

Zunächst einmal ein Beispiel!

$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \text{und} \quad Fv_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, Fv_2 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}.$$

Dann ist  $F(v_1) \neq F(v_2)$ , aber F ist nicht injektiv, da

$$F(3v_1) \stackrel{L2}{=} 3F(v_1) = \begin{pmatrix} 6 \\ 0 \end{pmatrix} = 2F(v_2) \stackrel{L2}{=} F(2v_2),$$

aber  $3v_1 \neq 2v_2$ .

Wir zeigen die äquivalente Aussage:

F ist genau dann injektiv, wenn die Familie  $(w_i)_{i\in I}$  linear unabhängig ist.

"  $\Longrightarrow$ " Nehmen Sie an dass, F injektiv ist, d.h.,

$$\forall v, w \in V, F(v) = F(w) \implies v = w.$$

Insbesondere für w = 0 (und daher F(w) = 0) erhält man

$$\forall v \in V, \ F(v) = 0 \implies v = 0. \tag{2}$$

Um nun zu zeigen, dass  $(w_i)_{i\in I}$  linear unabhängig ist, nehmen Sie an, dass  $\exists \alpha_i \in K, \ \forall i \in I$ , so dass  $\sum_{i\in I} \alpha_i w_i = 0$ . Also

$$\sum_{i \in I} \alpha_i w_i = 0 \implies \sum_{i \in I} \alpha_i F(v_i) = 0$$

$$\stackrel{(L2)}{\Longrightarrow} \sum_{i \in I} F(\alpha_i v_i) = 0$$

$$\stackrel{(L1)}{\Longrightarrow} F(\sum_{i \in I} \alpha_i v_i) = 0$$

$$\stackrel{(2)}{\Longrightarrow} \sum_{i \in I} \alpha_i v_i = 0$$

$$\stackrel{(v_i)l,u}{\Longrightarrow} \alpha_i = 0 \ \forall i \in I.$$

Also ist  $(w_i)_{i \in I}$  linear unabhängig.

"\infty" Nehmen Sie an, dass  $(w_i)_{i\in I}$  linear unabhängig ist. Man wähle  $v,w\in V$ , d.h.,  $v=\sum_{i\in I}\alpha_i v_i$ ,  $w=\sum_{i\in I}\beta_i v_i$ . Um zu zeigen, dass F injektiv ist, nehme man an, dass F(v)=F(w):

$$F(v) = F(w) \implies F(\sum_{i \in I} \alpha_i v_i) = F(\sum_{i \in I} \beta_i v_i)$$

$$\implies F(\sum_{i \in I} \alpha_i v_i) - F(\sum_{i \in I} \beta_i v_i) = 0$$

$$\stackrel{(L1)}{\Longrightarrow} F(\sum_{i \in I} \alpha_i v_i - \sum_{i \in I} \beta_i v_i) = 0$$

$$\implies F(\sum_{i \in I} (\alpha_i - \beta_i) v_i) = 0$$

$$\stackrel{(L1),(L2)}{\Longrightarrow} \sum_{i \in I} (\alpha_i - \beta_i) F(v_i) = 0$$

$$\implies \sum_{i \in I} (\alpha_i - \beta_i) w_i = 0$$

$$\stackrel{(w_i)l.u.}{\Longrightarrow} \alpha_i - \beta_i = 0 \ \forall i \in I$$

$$\implies v = w.$$