Differentialgeometrie II Sommersemester 2021

https://home.mathematik.uni-freiburg.de/mathphys/lehre/SoSe21/DiffGeoII.html

Exercise sheet 9

Exercise 35. More quotient singularities.

(a) Show that the following affine algebraic varieties

$$V(x_0^2 + x_1^{n-1} + x_1 x_2^2), \text{ for } n \ge 3$$

$$V(x_0^2 + x_1^3 + x_2^4)$$

$$V(x_0^2 + x_1^3 + x_1 x_2^3)$$

$$V(x_0^2 + x_1^3 + x_2^5)$$

in $\mathbb{A}^3_{\mathbb{C}}$ have a unique singular point at x = 0.

(b) The varieties in (a) are "quotient singularities", i.e. they are isomorphic to affine algebraic varieties $(\mathbb{C}^2/G, \mathbb{C}[z_1, z_2]^G)$ for appropriate groups $G \subset SU(2)$. Show this for the first family of varieties in (a).

Exercise 36. Complex projective spaces. Show that for any $n \in \mathbb{N}$, the *n*-dimensional complex projective space \mathbb{CP}^n is a smooth manifold by constructing an atlas such that each coordinate patch is homeomorphic to an open subset of \mathbb{C}^n and such that all coordinate changes are holomorphic (in each component). This shows that \mathbb{CP}^n is a *complex* manifold.

Exercise 37. Ideals.

(a) Prove that all maximal ideals in $\mathbb{C}[z]$ are of the form (z-a) for $a \in \mathbb{C}$.

Hint. You may use the Euclidean algorithm for elements of $\mathbb{C}[z]$.

Note. This result generalizes as follows. All maximal ideals in $\mathbb{C}[z_1, \ldots, z_n]$ are of the form $(z_1 - a_1, \ldots, z_n - a_n)$ for $a_1, \ldots, a_n \in \mathbb{C}$.

(b) Give an example of a non-zero, proper prime ideal \mathfrak{p} of $\mathbb{C}[z_1, z_2]$ which is not maximal and determine all the maximal ideals containing \mathfrak{p} .

Exercise 38. Tangent bundles of complex manifolds. Let M be a complex manifold M with a holomorphic atlas $\{U_{\alpha}\}_{\alpha}$, i.e. M can be covered by open charts $U_{\alpha} \subset M$ such that for each U_{α} , there exists a homeomorphism $\phi_{\alpha} \colon U_{\alpha} \to V_{\alpha}$, where $V_{\alpha} \subset \mathbb{C}^m$ is open, and the coordinate changes

$$\phi_{\alpha} \circ \phi_{\beta}^{-1}|_{\phi_{\beta}(U_{\alpha} \cap U_{\beta})} \colon \phi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \phi_{\alpha}(U_{\alpha} \cap U_{\beta})$$

are holomorphic.

Show the following:

(a) The transition functions for the holomorphic tangent bundle \mathcal{T}_M and the holomorphic cotangent bundle \mathcal{T}_M^* are given on each intersection $U_{\alpha} \cap U_{\beta}$ of open charts by holomorphic maps

$$A, B: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}_m(\mathbb{C})$$

with $AB^T = \mathrm{id}_{\mathbb{C}^m}$.

(b) There is an isomorphism of complex vector bundles $TM \xrightarrow{\simeq} \mathcal{T}_M$ induced by

$$TM|_U \xrightarrow{\simeq} \mathcal{T}_M|_U$$
$$\frac{\partial}{\partial x^j} \longmapsto \frac{\partial}{\partial z^j}$$
$$\frac{\partial}{\partial u^j} \longmapsto i\frac{\partial}{\partial z^j}$$

where U is a chart with coordinates $z^k = x^k + iy^k$ for $k \in \{1, \ldots, m\}$.