Differentialgeometrie II Sommersemester 2021

https://home.mathematik.uni-freiburg.de/mathphys/lehre/SoSe21/DiffGeoII.html

Exercise sheet 8

Exercise 31. Generators for simple Lie algebras. Let \mathfrak{g} be a simple Lie algebra with Cartan subalgebra \mathfrak{h} , root system $\Delta = \Delta^+ \cup \Delta^-$ and Π a basis of simple roots. Show that the set $\{E_{\pm \alpha} \mid \alpha \in \Pi\}$ generates \mathfrak{g} as a Lie algebra.

Exercise 32. Serre relations. Let \mathfrak{g} be a simple Lie algebra with Cartan subalgebra \mathfrak{h} , root system $\Delta = \Delta^+ \cup \Delta^-$ and let $\Pi = (\alpha_1, \ldots, \alpha_r)$ be a basis of simple roots with associated Cartan matrix $A = (a_{ij})_{i,j \in \{1,\ldots,r\}}$.

Show that the relations

$$\begin{aligned} [h_i, h_j] &= 0 & [h_i, x_j] = a_{ij} x_j \\ [x_i, y_j] &= \delta_{ij} h_j & [h_i, y_j] = -a_{ij} x_j \end{aligned} \text{ for all } i, j \end{aligned}$$

and

$$(\operatorname{ad}_{x_i})^{-a_{ij}+1}(x_j) = 0$$

(ad_{y_i})^{-a_{ij}+1}(y_j) = 0 for all $i \neq j$

hold for an appropriate choice of basis (h_1, \ldots, h_r) of \mathfrak{h} and for suitable $x_j \in \mathfrak{g}_{\alpha_j} \setminus \{0\}$ and $y_j \in \mathfrak{g}_{-\alpha_j} \setminus \{0\}$. Prove that for your choice of x_j and y_j

$$(\mathrm{ad}_{x_i})^{-a_{ij}}(x_j) \neq 0$$
$$(\mathrm{ad}_{y_i})^{-a_{ij}}(y_j) \neq 0$$

Exercise 33. *Ideals.* Show the following:

- (a) The vanishing ideal I(Z) of an algebraic set $Z \subset \mathbb{A}^n_{\mathbb{C}}$ is an ideal of $\mathbb{C}[z_1, \ldots, z_n]$.
- (b) If $Y \subset Z \subset \mathbb{A}^n_{\mathbb{C}}$ are algebraic sets, then $I(Z) \subset I(Y)$.
- (c) For an algebraic set $Z \subset \mathbb{A}^n_{\mathbb{C}}$ one has V(I(Z)) = Z, where for any ideal $J \subset \mathbb{C}[z_1, \ldots, z_n]$, one defines $V(J) = \{x \in \mathbb{C}^n \mid f(x) = 0 \text{ for all } f \in J\}$. Is it true that I(V(J)) = J for any ideal J?

Exercise 34. Coordinate change. Let $n \ge 1$ and let $f \in \mathbb{C}[z_1, \ldots, z_n] \setminus \{0\}$ be any polynomial which is not identically zero. Show that

$$(V(f + x^2 + y^2), \mathbb{C}[x, y, z_1, \dots, z_n]/(f + x^2 + y^2))$$

and $(V(f + xy), \mathbb{C}[x, y, z_1, \dots, z_n]/(f + xy))$

are isomorphic affine varieties.