Differentialgeometrie II Sommersemester 2021

https://home.mathematik.uni-freiburg.de/mathphys/lehre/SoSe21/DiffGeoII.html

Exercise sheet 7

Exercise 26. Root systems and root reflections. Let $(V, \langle -, -\rangle)$ be a finite-dimensional Euclidean vector space and let $\Delta \subset V \setminus \{0\}$ be a root system in V (see Definition 1.4.9).

For a root $\alpha \in \Delta$ let

$$s_{\alpha} \colon V \to V$$
$$v \mapsto v - \frac{2\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha$$

denote the corresponding root reflection. Show the following:

- (a) For all $\alpha \in \Delta$ we have that
 - $s_{\alpha} \in \mathcal{O}(V, \langle -, \rangle)$
 - $s_{\alpha}^2 = \mathrm{id}$
 - $s_{\alpha}(\alpha) = -\alpha$
 - $s_{\alpha}(v) = v$ if $\langle \alpha, v \rangle = 0$

so that in particular $-\alpha \in \Delta$.

(b) $\langle s_{\alpha} \mid \alpha \in \Delta \rangle$ is a finite subgroup of $O(V, \langle -, - \rangle)$.

Exercise 27. Isomorphisms of root systems. Show that an isomorphism of root systems in $(V, \langle -, - \rangle)$ need not be given by an orthogonal transformation of $(V, \langle -, - \rangle)$.

Exercise 28. Maximal positive roots. Let $\Delta = \Delta^+ \cup \Delta^-$ be a partition of a root system into positive and negative roots as in Definition 1.4.14. Show that if Δ is irreducible, then there exists a unique maximal $\rho \in \Delta^+$, i.e. for all $\alpha \in \Delta^+$, $\rho + \alpha \notin \Delta^+$.

Exercise 29. Let Δ denote a root system in a Euclidean vector space $(V, \langle -, - \rangle)$ and $\Delta = \Delta^+ \cup \Delta^-$ be a partition into positive and negative roots. Let $\Pi = (\alpha_1, \ldots, \alpha_r)$, where $\alpha_j \in \Delta^+$ for $j \in \{1, \ldots, r\}$ are simple roots, be a basis of V and let

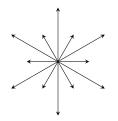
$$A = (a_{ij})_{1 \le i,j \le r}$$
 with $a_{ij} = 2 \frac{\langle \alpha_i, \alpha_j \rangle}{\langle \alpha_i, \alpha_i \rangle}$

be the corresponding Cartan matrix. Show the following:

(a) For all $i, j \in \{1, \ldots, r\}$, $a_{ij} \in \mathbb{Z}$, $a_{ii} = 2$ and $a_{ij} \leq 0$ if $i \neq j$.

- (b) For all $i, j \in \{1, \ldots, r\}$, $a_{ij} = 0 \iff a_{ji} = 0$ (note that in general $a_{ij} \neq a_{ji}$).
- (c) there exists a matrix $D = \text{diag}(d_1, \ldots, d_r)$ with $d_j > 0$ for $j \in \{1, \ldots, r\}$ such that DAD^{-1} is symmetric positive definite; if Δ is irreducible, then D is unique up to multiplication by a scalar.

Exercise 30. The root system of type G_2 . Let Δ be the set of the following 12 vectors in \mathbb{R}^2 with the usual Euclidean inner product



where each long arrow is the sum of the neighbouring two shorter arrows.

- (a) Show that Δ is an abstract root system and determine whether Δ is reducible or irreducible.
- (b) Choose a decomposition Δ = Δ⁺ ⊍Δ⁻ into positive and negative roots and choose a basis Π of simple roots. For this choice, calculate the corresponding Cartan matrix (see Exercise 29) and determine the maximal positive root (see Exercise 28).
- (c) Determine all possible lengths of the root strings for Δ .