Differentialgeometrie II Sommersemester 2021

https://home.mathematik.uni-freiburg.de/mathphys/lehre/SoSe21/DiffGeoII.html

Exercise sheet 6

Exercise 22. For $\mathfrak{g} = \mathfrak{sl}_{n+1}(\mathbb{C})$ and $\mathfrak{h}, \alpha_{ij}$ as in Exercise 18 and $H_{\alpha}, \alpha \in \mathfrak{h}^*$, as in Exercise 21, calculate $H_{\alpha_{ij}}$ for any $i, j \in \{0, \ldots, n\}$ with $i \neq j$.

Exercise 23. Give a proof of the following statement, where the Assumptions 1.4.1 are required:

Corollary 1.4.7. Let $\alpha, \beta \in \Delta \cup \{0\}$.

- (a) If $\alpha + \beta \neq 0$, then $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$.
- (b) If $\alpha, \beta \neq 0$ and $0 \notin \Delta^{\alpha}_{\beta}$, then

$$[E_{-\alpha}, [E_{\alpha}, E_{\beta}]] = \frac{n_+}{2}(1+n_-)\alpha(H_{\alpha})E_{\beta}$$

where n_{\pm} are as in the proof of Proposition 1.4.6.

Exercise 24. Low-dimensional representations of $\mathfrak{sl}_2(\mathbb{C})$. Let

$$\mathfrak{sl}_2(\mathbb{C}) = \{ X \in \operatorname{Mat}_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr} X = 0 \}$$

with basis

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Recall from Theorem 1.4.5 that an *n*-dimensional irreducible representation $\pi : \mathfrak{sl}_2(\mathbb{C}) \to \operatorname{End}_{\mathbb{C}}(V)$ can be defined by letting V be the vector space with basis (v_0, \ldots, v_{n-1}) such that

- $v_j = \pi(f)^j v_0$ and $\pi(f) v_{n-1} = 0$
- $\pi(e)(v_j) = j(n-j)v_{j-1}$
- $\pi(h)(v_j) = (n 2j 1)v_j$

for $j \in \{0, ..., n-1\}$, where we set $v_{-1} = 0$.

(a) Show that the 1-dimensional irreducible representation may be given by the zero map $\mathfrak{sl}_2(\mathbb{C}) \to \mathbb{C}$.

- (b) Show that the inclusion $\mathfrak{sl}_2(\mathbb{C}) \hookrightarrow \operatorname{Mat}_{2 \times 2}(\mathbb{C})$ is an irreducible 2-dimensional representation on $V \simeq \mathbb{C}^2$ and relate the basis (v_0, v_1) to the standard basis for \mathbb{C}^2 .
- (c) Show that the adjoint representation of $\mathfrak{sl}_2(\mathbb{C})$ is an irreducible 3-dimensional representation on $V \simeq \mathfrak{sl}_2(\mathbb{C})$ and relate the basis (v_0, v_1, v_2) to the basis (e, f, h).

Exercise 25. Irreducible representations of $\mathfrak{sl}_2(\mathbb{C})$ via homogeneous polynomials. Let

$$V = \operatorname{Sym}^{d}(\mathbb{C}^{2}) := \operatorname{span}_{\mathbb{C}}\{x^{d}, x^{d-1}y, \dots, xy^{d-1}, y^{d}\}$$

be the (d + 1)-dimensional vector space of homogeneous polynomials of degree d in two variables x, y and define a representation of $\mathfrak{sl}_2(\mathbb{C})$ on V by letting $\pi \colon \mathfrak{sl}_2(\mathbb{C}) \to \operatorname{End}_{\mathbb{C}}(V)$ be determined by

$$\pi(e) = x \frac{\partial}{\partial y}, \qquad \pi(f) = y \frac{\partial}{\partial x}, \qquad \pi(h) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}.$$

Show that V is an irreducible representation of $\mathfrak{sl}_2(\mathbb{C})$ and relate the basis (v_0, \ldots, v_d) in Theorem 1.4.5 (see Exercise 24) to the basis (x^d, \ldots, y^d) .