Differentialgeometrie II Sommersemester 2021

https://home.mathematik.uni-freiburg.de/mathphys/lehre/SoSe21/DiffGeoII.html

Exercise sheet 5

Exercises 20 and 21 make use of the content of the lecture planned for 31 May 2021.

Exercise 19. Regular elements. Let \mathfrak{g} denote a finite-dimensional Lie algebra over \mathbb{C} and $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra. Let

$$\mathfrak{g}=igoplus_{lpha\in\mathfrak{h}^*}\mathfrak{g}_lpha$$

be the corresponding root space decomposition of Theorem 1.3.3. Give a proof of the following statements.

(a) Let $X \in \mathfrak{h}$. Then the following are equivalent:

- X is regular in \mathfrak{h} .
- For all $\alpha \in \mathfrak{h}^* \setminus \{0\}$ we have that $\alpha(X) \neq 0$ whenever $\mathfrak{g}_{\alpha} \neq \{0\}$.
- $\mathfrak{h} = \ker(\operatorname{ad}_X^{\dim \mathfrak{g}}).$ *Hint.* For all $X \in \mathfrak{h}$ show and use that

$$\ker(\mathrm{ad}_X^{\dim\mathfrak{g}}) = \mathfrak{h} \oplus \bigoplus_{\substack{\alpha \in \mathfrak{h}^* \setminus \{0\}\\\alpha(X) = 0}} \mathfrak{g}_\alpha.$$

(b) The set $\{Y \in \mathfrak{g} \mid Y \text{ is regular in } \mathfrak{g}\}$ of regular elements is connected.

Hint. Show that the complement of the zero-set of any polynomial function $P \colon \mathbb{C}^{n+1} \to \mathbb{C}^m$ (i.e. $P = (p_1, \ldots, p_m)^{\mathsf{T}}$ with $p_1, \ldots, p_m \in \mathbb{C}[z_0, \ldots, z_n]$) for $n, m \in \mathbb{N}$ is connected.

Exercise 20. Give a proof of the following statement, which shows that the converse of Theorem 1.3.11 (2) holds:

Corollary 1.3.15. Let \mathfrak{g} denote a finite-dimensional semisimple Lie algebra over \mathbb{C} and $\mathfrak{h} \subset \mathfrak{g}$ a Lie subalgebra. Then \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} if and only if

$$\operatorname{ad}_{\mathfrak{h}} = \{ \operatorname{ad}_H \mid H \in \mathfrak{h} \}$$

is a maximal Abelian Lie subalgebra of $\operatorname{End}_{\mathbb{C}}(\mathfrak{g})$ which is simultaneously diagonalizable.

Exercise 21. \mathfrak{sl}_2 triples. Let \mathfrak{g} denote a semisimple Lie algebra over \mathbb{C} and $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra with $\Delta \subset \mathfrak{h}^* \setminus \{0\}$ such that $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$, where $\mathfrak{g}_{\alpha} \neq \{0\}$ for all $\alpha \in \Delta$. Show the following:

- (a) Let (h, e, f) be an \mathfrak{sl}_2 triple of \mathfrak{g} . Then $\operatorname{span}_{\mathbb{C}}\{h, e, f\}$ is a Lie subalgebra of \mathfrak{g} isomorphic to $\mathfrak{sl}_2(\mathbb{C})$.
- (b) For every $\alpha \in \Delta$ set

$$h_{\alpha} := \frac{2H_{\alpha}}{\langle \alpha, \alpha \rangle} \qquad e_{\alpha} := \frac{2E_{\alpha}}{\langle \alpha, \alpha \rangle} \qquad f_{\alpha} := E_{-\alpha}$$

where

- $H_{\alpha} \in \mathfrak{h}$ is such that $\alpha(H) = \kappa(H, H_{\alpha})$ for all $H \in \mathfrak{h}$
- $\langle \cdot, \cdot \rangle : \mathfrak{h}^* \times \mathfrak{h}^* \to \mathbb{C}$ is determined by $\langle \alpha, \beta \rangle = \kappa(H_\alpha, H_\beta)$ for all $\alpha, \beta \in \Delta$
- $E_{\alpha} \in \mathfrak{g}_{\alpha} \setminus \{0\}$ with $[E_{\alpha}, E_{-\alpha}] = H_{\alpha}$ and $\kappa(E_{\alpha}, E_{-\alpha}) = 1$.

Then $(h_{\alpha}, e_{\alpha}, f_{\alpha})$ is an \mathfrak{sl}_2 triple.

(c) For every $\alpha \in \Delta$ and $\beta \in \Delta \cup \{0\}$, the vector space

$$V_{eta} := igoplus_{\gamma \in \Delta^{lpha}_{eta}} \mathfrak{g}_{\gamma}$$

carries a nontrivial representation of the Lie algebra $\operatorname{span}_{\mathbb{C}} \{H_{\alpha}, E_{\alpha}, E_{-\alpha}\} \simeq \mathfrak{sl}_2(\mathbb{C})$ via the adjoint action. Here $\Delta_{\beta}^{\alpha} := \{\beta + n\alpha \mid n \in \mathbb{Z}\} \cap (\Delta \cup \{0\})$ is the α -string containing β .